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Introduction 
 

Nowadays, it is well understood that brain activity generates a variable electromagnetic field that 

can be detected quite accurately by using scalp electrodes as well as by superconductive magnetic 

sensors. Electroencephalography (EEG) and magnetoencephalography (MEG) are therefore useful 

techniques for the study of brain dynamics and functional cortical connectivity, because of their 

high temporal resolution (milliseconds [1,2]). Electroencephalography reflects the activity of 

cortical generators oriented both in tangential and radial way with respect to the scalp surface, 

whereas MEG reflects mainly the activity of the cortical generators oriented tangentially with 

respect to the magnetic sensors. However, the different electrical conductivity of the brain, skull 

and scalp markedly blurs the EEG potential distributions and makes the localization of the 

underlying cortical generators through this technique a problematic issue. To overcome this 

problem, high-resolution EEG (HR-EEG) technology was introduced during the last decade and 

was shown to greatly improve the spatial resolution of the conventional EEG [2–4]. Such 

technology included (i) the use of realistic head models obtained from sequential magnetic 

resonance imaging (MRI) of the subject’s head, to mathematically model the propagation of the 

potential from the cortex to the scalp sensors; (ii) the sampling of the spatial distribution of scalp 

potential with a high number of surface electrodes (64–128); (iii) the use of mathematic Laplacian 

(SL) operators to improve the spatial details of the recorded scalp potential distribution; (iv) the use 

of an accurate model for the cortical sources that typically includes 3000–5000 current dipoles.  

However, the spatial resolution of the HR-EEG/MEG techniques is fundamentally limited by the 

inter-sensor distances and by the fundamental laws of electromagnetism [1]. Despite the lack of 

spatial resolution for these techniques, neural sources can be localized from HR-EEG or MEG data 

by making a priori hypotheses on their number and extension. When a known number of cortical 

sources (i.e. short-latency evoked potentials) generate the neuronal activity, the location and 

strength of these sources can be reliably estimated by the dipole localization technique [5]. 

However, with the exception of the early processing of sensory responses, event-related cortical 

responses include a distributed network of several and unknown areas. When the distributed cortical 

network is supposed to be active, neural sources could be modeled by linear inverse estimation 

[6,7]. This approach implies the use of both thousands of equivalent current dipoles as a source 

model and realistic head models, reconstructed from magnetic resonance images, as a volume 

conductor medium. The use of geometrical constraints can generally reduce the solution space (i.e. 

the set of all possible combinations of the cortical dipoles strengths). For example, the dipoles can 

be disposed along the reconstruction of cortical surface with a direction perpendicular to the local 

surface. An additional constraint is to force the dipoles to explain the recorded data with a minimum 

or a low amount of energy (minimum norm solutions [6,8]). In addition, the use of a priori 



information from other neuro-imaging techniques having high spatial resolution, like functional 

magnetic resonance imaging (fMRI), has been suggested to improve the localization of sources 

from HR-EEG/MEG data [8,9]. In fact, human neocortical processes involve temporal and spatial 

scales spanning several orders of magnitude, from the rapidly shifting somato-sensory processes 

characterized by a temporal scale of milliseconds and a spatial scale of a few square millimeters to 

the memory processes involving periods of seconds and spatial scale of square centimeters. 

Information about the brain activity can be obtained by measuring different physical variables 

linked to the brain processes, such as the increase in consumption of oxygen by the neural tissues or 

the variation of the electric potential over the scalp surface. It is worth noting that all these variables 

have their own spatial and temporal resolution. The different neuro-imaging techniques are thus 

confined to the spatio-temporal resolution offered by the measured variables. Today, no neuro-

imaging method provides at the same time for a spatial resolution on a millimeter scale and a 

temporal resolution on a millisecond scale. As a consequence of the previous statement, the 

functional brain images obtained with the various techniques at our disposal (fMRI, HR-EEG, 

MEG) are like the pieces of a puzzle, the “neuro-imaging puzzle”, that we have to put together to 

retrieve a unique picture of the underlying brain activity. Hence, it is of interest to study the 

possibility of integrate the information offered by the different physiological variables related to the 

brain functions in a unique mathematical context. This operation is called the “multimodal 

integration” of variables X and Y, where the X variable typically has particularly appealing spatial 

resolution property (millimeter scale) and the Y variable has particularly attractive temporal 

properties (millisecond scale). Nevertheless, the issue of several temporal and spatial domains is 

critical in the study of brain functions, since different properties could become observable, 

depending on the spatiotemporal scales at which the brain processes are measured. The rationale of 

the multimodal approach based on fMRI, MEG and HR-EEG data to locate brain activity is that 

neural activity generating EEG potentials or MEG fields increases glucose and oxygen demands 

[10]. This results in an increase in the local hemodynamic response that can be measured by fMRI 

[11,12]. Overall, such a correlation between electrical and hemodynamic concomitants provides the 

basis for a spatial correspondence between fMRI responses and HR-EEG/MEG source activity. 

Furthermore, numerical simulations have shown that the use of fMRI priors increases the quality of 

the cortical current estimations for both HR-EEG and MEG recordings [9,13,14].  

In the following, we first present the mathematical principle of the multimodal integration of HR-

EEG with MEG data. Then, we show how to integrate mathematically HR-EEG/MEG data with 

fMRI data. Besides these methodologies, we present some practical applications for the localization 

of sources responsible for intentional simple movements executed by healthy subjects. 

 

Cortical activity estimation from non invasive EEG and MEG 

measurements 
 

The Head and the Source Models 

 

Let us assume an EEG recording performed with a set of M electrodes disposed on the scalp 

surface. In the following, we indicate with b the vector of M electrical measurements recorded from 

the scalp. In order to perform the estimation of the cortical activity we also need a model of the 

head volume conductor. This model is used to approximate the propagation of the potential from the 

modeled neural generators to the measurement sensors. The head model can be of spherical or 

elliptical shape or can recall the realistic head shape. Since we have to estimate the source activity 

from non-invasive EEG measurements, we need a mathematical model for the neural sources. In the 

analysis of EEG and MEG, the largely used mathematical model for the neural source is the current 



dipole. Such model is largely used in literature since approximates very well the activity of 

relatively small patches of the cortical tissue. In this particular context, we used many current 

dipoles located in the brain along the entire cerebral volume or along its cortical surface. If we 

would like to model the entire brain volume, we had to divide it in voxels and then placing a triplet 

of orthogonal current unitary dipoles at each voxel position. Another source model takes into 

account only the cortical geometry, to constraint the dipoles to lie orthogonal to the modeled 

cortical surface. In the following, we deal with the problem of source estimation by using a 

representation of the cortical surface, and we use a set of dipoles disposed along such surface as 

source model (see Fig. 1). However, all the mathematical formulas presented here still hold also in 

the case in which the neuronal space is divided in voxels, attempting to model also the subcortical 

structures. 

Each dipole placed inside the volume conductor model of the head has a unitary strength and 

different direction, according to the local cortical geometry or to the adopted reference coordinate 

system. There is no limitation for the number of sources placed inside the head model, which 

depends on the modeling capabilities of the used computational system. In the following, we 

indicate with N the number of dipoles whose strength is to be estimated from the M-dimensional 

measurement vector b. The typical values for N are between 1000 and 7000, while the values for M 

are in the range 64-256. We indicate as x the n-dimensional vector of the unknown current strengths 

for the dipoles.  

 

 
Fig. 1 Realistic head model for linear inverse source estimation. Note the particular showing the 

hand area tessellated with triangles (right figure). At the center of each triangle, a dipole with 

unitary strength and perpendicular to the triangle was posed.  

 

The Linear Inverse Problem 

 

In the estimation of neuronal activity from non-invasive measurements, we have to use a 

mathematical model for the description of the propagation of the potential distribution from each 

modeled sources to the sensors positions. In other words, we have to compute the potential 

distribution occurring on the set of the M sensors over the head model due to the i-th unitary dipole 

placed at the i-th cortical location. Such predictions can be made with the aid of analytical or 

boundary-element formulations, depending on the shape of the head model used. While the 

equation for the potential distribution for a three-layered spherical head model can be found in 

literature, in appendix I are reported the equations that compute the potential value due to a dipole 

inside a realistic head model over a point located on the scalp surface. Such equations are for the 

electric case, while those in appendix II are for the magnetic case. 

In the following, we indicate as Ai the potential distribution over the M sensors due to the unitary i-

th cortical dipole. The collection of all the M-dimensional vectors Ai, (i = 1,…, N) describes how 



each dipole generates the potential distribution over the head model. This collection is called the 

lead field matrix A. 

With the definitions provided above, we can say that the estimate of the strength of the modeled 

dipolar source strength x from the non invasive set of measurement b, is obtained by solving the 

following linear system: 

 

Ax = b             (1) 

 

where A is the M x N lead field matrix, x is the N-dimensional array of the unknowns cortical 

strengths and b is the M-dimensional vector of the instantaneous (electrical or magnetic) 

measurements. This is a strongly underdetermined linear system, in which the number of the 

unknown variables (i.e. the dimension of the vector x), is greater than the number of measurement b 

of about one order of magnitude.  In this case, from the linear algebra we note that there are infinite 

solutions for the vector of dipole strengths x. All these solutions explain in the same way the data 

vector b. Furthermore, the linear system is ill conditioned as results of the substantial equivalence 

of the several columns of the electromagnetic lead field matrix A. In fact, we know that each 

column of the lead field matrix arise from the potential distribution generated by the dipolar sources 

that are located in similar position and orientation along the used cortical model. Regularizing the 

inverse problem consists in attenuating the oscillatory modes generated by vectors associated with 

the smallest singular values of the lead field matrix A, introducing supplementary and a priori 

information on the sources to be estimated. In the following, we characterize with the term 

“solution space” the space in which the “best” current strength solution x will be found. The 

“measurement space” is the vectorial space in which the vector b of the gathered data is considered. 

The solution of the linear problem Ax = b with the variation approach is based on the idea of 

selecting metrics from the solution space and the measurement space, respectively. These two 

metrics are characterized by symmetric matrices and express our idea of closeness in the same 

spaces. With this approach, the minimization function is composed of two terms, one that evaluates 

how well the solution explains the data, and the other that measures the closeness of the solution to 

an a priori selected.  

The formulation of the problem expressed in the eq.1 now becomes: 

 

ξ = argmin (|| (Ax-b)||Wd
2
  + λ

2
 || x||Wx

2
 )       (2) 

 

where the matrices Wd and Wx are associated with the the metrics of the measurement and source 

space, respectively, and λ is the Lagrangian parameter. The source estimate ξ was hence the source 

distribution that between the infinite possible solutions to the undetermined problem described in 

the equation 2 explains the EEG data with a minimum amount of energy (weighted minimum norm 

solution). By setting the matrices Wd and Wx to the identity, the minimum norm estimation was 

obtained.  

The solution of the problem described in eq. 2 has the following the form: 

 

ξ= Gb             (3) 

 

where under the hypothesis that the metric Wx and Wd are invertible the pseudo-inverse matrix G 

is given by 

 

G = Wx
-1

 A’ (AWx
-1

A’ + λWd
-1

)
-1     

   (4) 

 

Hamalainen and Ilmoniem proposed the estimation of the cortical activity with the minimum norm 

solution in 1984 [8]. However, it was recognized that in this particular application, the solutions 



obtained with the minimum norm constraints were biased toward those dipoles that are located 

nearest to the sensors. In fact, there is a dependence of the distance in the law of potential (and 

magnetic field) generation and this dependence tends to increase the activity of the more superficial 

dipoles while depress the activity of the dipoles far from the sensors. The solution to this bias was 

obtained by taking into account a compensation factor, for each used dipole, that equalized the 

visibility of the dipole from the sensors. This technique, called column norm normalization was 

used in the linear inverse problem by Pascual-Marqui [15] and then adopted largely by the scientist 

in this field. With the column norm normalization, a diagonal NxN matrix W was formed, whose 

generic i-th term on the diagonal is equal to:  

 

Wii = ||Ai||
-2         

   (5) 

 

representing the L2-norm of the i-th column of the lead field matrix A. In this way, dipoles near to 

the sensors (with a large || Ai.||) will be depressed in the solution of eq.2, since their activations are 

not convenient from the point of view of the functional cost. In fact, dipoles with low visibility from 

the sensors (with a low ||Ai||) have an associate cost function convenient to use. The use of this Wx 

matrix in the source estimation is known as weighted minimum norm solution [16]. 

Another question of interest in the solution of linear inverse problem is the setting of the Lagrangian 

parameter λ that regulates the presence of the a priori information inside the solution of the 

problem. How it is possible to set such parameter in an “optimal” way? 

An optimal regularization of the linear system described in eq.2 was obtained through the Tikhonov 

and L-curve approach [17]. This curve plots the residual norm versus the solution norm at different 

values of the regularization parameter lambda. It is worth of notice that the optimal regularization 

value can be selected automatically. In fact, this value is located at the “corner” of the L-curve plot. 

Other criteria for choosing the value of lambda are for instance the Generalized Cross Validation 

(GCV) or the CRESO method together with the zero-crossing method and the relative minimal 

product. 

 

Multimodal Integration of EEG and MEG data 

 

At a first look, the attempt to integrate the EEG and MEG data in order to increase the quality of the 

source reconstruction fails when we consider that the units of the electrical and magnetic fields 

differ. How we can fuse these data together? One possible answer is to transform the measurements 

produced by the electric and magnetic sensors in terms of standard deviations of measurement 

noise. In this way, both the electrical and magnetic values are transformed and then reported on a 

common scale.  

In this context, the estimation of the covariance matrix of the electrical and the magnetic noise 

assumes a particular emphasis. The estimation of such matrices requires the recording of several 

single sweeps of EEG and MEG data, and the possibility to determine a segment of the recorded 

data in which no task-related activity is present. Then, the maximum likelihood estimates for the 

covariance matrices of the noise electrical Ne and magnetic Nm matrices have to be computed on 

all the sweeps recorded for the period of interest. With the use of these matrices, we can produce the 

block covariance matrix of the electromagnetic measurement, called S by S = (Ne Nm). 

The forward solution specifying the potential scalp field due to an arbitrary dipole source 

configuration was computed according to the following linear system: 
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




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


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m

v
x

B

E

            (6) 



 

where E is the electric lead field matrix obtained by the boundary element technique for the realistic 

MR-constructed head model and B is the magnetic lead field matrix obtained for the same head 

model. x is the array of the unknown cortical dipole strengths, v is the array of the recorded 

potential values and m is the array of magnetic values. The lead field matrix E and the array v were 

referenced consistently. In order to scale the EEG and MEG data, the rows of the lead field matrix 

E and B was first normalized by the rows norm [18]. This scaling is applied in the same way on the 

electrical and magnetic measurements arrays, v and m. After row normalization, the linear system 

can be restated as:  

 

Ax = b             (7) 

 

where A is the matrix composed of the normalized electric and magnetic lead fields, and b is the 

normalized measurement array of EEG and MEG data (v and m), respectively.  

As already noted before, the general formulation of the linear inverse problem based on this 

assumption is: 

 

ξ = argmin (|| (Ax-b)||Wd
2
  + λ

2
 || x||Wx 

2
 )        (8) 

  

where Wd is now equal to the covariance matrix S of the noise of the normalized EEG and MEG 

sensors, while Wx is the matrix that regulates how each EEG or MEG sensor is influenced by 

dipoles located at different depths into the source model. The covariance matrix S was derived from 

the normalized EEG and MEG data by means of the maximum likelihood estimation as described 

before. It is essential that the estimate of S have to be performed on both EEG and MEG data with 

maximum background electromagnetic noise (i.e., no event-related electromagnetic signal). The 

matrix Wx is a diagonal matrix in which the i-th element is equal to the norm of the i-th column of 

the normalized lead field matrix A. As said before, an optimal regularization of the linear system 

Ax = b was obtained by the L-curve approach [17] that plots the residual norm versus the solution 

norm at different values of the regularization parameter lambda. 

In figure 2, we show a representative result obtained from the linear inverse estimates of EEG, 

MEG and combined EEG-MEG data. The recordings were performed during the voluntary 

movement of the right middle finger.  



 
 

Fig. 2. Amplitude grey scale 3-D maps showing linear inverse estimates of electroencephalographic 

(EEG), magnetoencephalographic (MEG), and combined EEG-MEG data recorded (128-50 

channels, respectively) from a subject about 110 msec after the onset of electromyographic 

response accompanying a voluntary brisk right middle finger extension. The original movement-

related EEG and MEG activity is also shown as a reference. Linear inverse estimates were mapped 

as electric fields forwarded over the dura mater compartment of the realistic magnetic resonance-

constructed subject’s head model. Percent gray scale (256 hues) is normalized with reference to the 

maximum amplitude calculated for each map. Maximum negativity (-100%) is coded in white and 

maximum positivity (+100%) in black. 

 

 

Integration of EEG/MEG and fMRI data 
 

In this section, a proposal for the use of fMRI constraints in the source estimate by the linear 

inverse problem is described. In the following, we assume to deal with the issue of integrating EEG 

and fMRI data, but we would like to note that a similar approach could be produced also for the 

fusion of the MEG with fMRI data. The methodology for the combination of all the modalities 

together (i.e. EEG, MEG and fMRI) for the source estimation will be the union of the techniques 

presented here and in the previous section. 

 

The Common Head Model  

One fundamental issue in the integration of the fMRI with the EEG data is the use of a common 

geometrical framework to register the volume conductor of the head model and the activated voxels 

deriving from the fMRI images. To do that, the fMRI images have to be first co-registered with the 

anatomic images of the subject’s head, which were obtained by the acquisition of T1-weighted 



conventional spin-echo-axial-oblique sequence. The sequential MR images of the analyzed subject 

constituted also the base for the construction of the volume conductor of the head model to be used 

in the EEG analysis. In this context, the structure for the scalp, skull and dura-mater have to be 

recognized from the MR images by automatic or semi-automatic segmentation procedure.  

Once the different structures for scalp, skull and dura-mater have been recognized and tessellated, 

the use of the boundary element modeling technique allows computing the potential distribution 

over the sensors generated by a dipole inside the brain. A brief description of the analysis is 

described in Appendix I. Once the common geometrical reference for the head for both EEG and 

fMRI measurements has been established, the fusion of the information from the activated brain 

voxels during EEG data acquisition can be addressed.  

 

The Percentage Change Hemodynamic Responses 

In the fMRI analysis, several methods to quantify the brain hemodynamical response during a 

particular task have been developed. Here we recall the Statistical Parametric Mapping (SPM) 

introduced at the early 90 by K.J. Friston, or methods relying on the use of statistical Bonferroni-

corrected t-test, or those based on the Kolmogorov-Smirnof tests. In principle, the issue of the 

integration between EEG and fMRI does not depend on the particular method used for the fMRI 

analysis. However, in order to illustrate the technique, in the following we analyze the case in 

which a particular fMRI quantification technique has been employed, called Percent Change 

technique. This measure quantifies the percentage increase of the fMRI signal during the task 

performance with respect to a resting state. The visualization of the voxels distribution in the brain 

space that are statistically increased during the task condition with respect the rest is called the PC 

(percent change) map. The difference between the mean rest and movement-related signal intensity 

is generally calculated voxel-by-voxel. The rest-related fMRI signal intensity is obtained by 

averaging the pre-movement and recovery fMRI. The Bonferroni-corrected Student’s t-test is also 

used to minimize the alpha inflation effects due to multiple statistical voxel-by-voxel comparisons 

(Type I error; p<0.05). Voxels with a statistically significant PC activation have to be projected 

onto the modeled cortical surface. PC values of the statistically activated voxels assigned to a 

certain cortical triangle are summed as a measure of the movement-related cortical activation. This 

measure corresponded to the i value that must be used as weighting function in the successive 

linear inverse minimization procedure. 

 

EEG linear inverse estimation 

The forward solution specifying the potential scalp field due to an arbitrary dipole source 

configuration is computed according to the linear system described in eq. 2. The lead field matrices 

A and the data b array have to be referenced consistently. To obtain a unique solution of the linear 

system (eq. 1), the variational problem for the sources x was posed as described in eq. 8. The 

solution of the variational problem depended on adequacy of the data and source space metrics. The 

metric for the data space was obtained by the use of statistics about the residual n = Ax - b. The 

metric for the source space was based on the norm of the residual vector n. The Mahalanobis metric 

for the data space has to be preferred here since it permitted to take into account easily information 

from combined EEG and MEG data (see previous section). The metric for the source space has to 

take into account the normalization of the lead field matrix A to balance the much more visibility of 

the superficial cortical sources from the EEG data with respect to the deepest ones. Furthermore, in 

the source metric we would like to insert the a priori information that comes from the fMRI-

activated voxels. To do that, we use the percentage intensity values (α) of the integrated fMRIs. The 

metric for the source space is then formed by a diagonal matrix W, the i-th term of which was: 
      



Wii = ||Ai||
2
 (αi)

-2
           (9) 

 

where ||Ai|| is the norm of the i-th column of the lead field matrix A and (α i) is a function of the 

statistically significant percentage increase of the fMRI signal assigned to the i-th dipole of the 

modeled source space. The α i) function is expressed as: 

 

g(αi) = 1 + K αi ,            αi 0;         (10) 

 

where the factor K tunes the fMRI solutions in the source space for the time varying 

electromagnetic component b. By inspecting eq. 9, high K values (i.e., K αi   10) produce a space 

norm W, which is roughly one order of magnitude lower than the one obtained by taking into 

account the only column normalization. On the other hand, low K values (i.e., K αi <<1) result in a 

W value roughly proportional to the squared column norm, which completely disregards the fMRI 

solution (i.e., 0% fMRI solution or 100% EEG solution). 

With the used metric, the pseudo-inverse matrix G now depends on the K values. The problem with 

this optimal regulation of the K value is the computational effort that can be remarkable when 

realistic source models with thousands of dipoles are used. However, the mean computational 

power available on personal computers doubles each 1.5 year. Hence, the actual computational 

effort to compute the EEG and fMRI integration cannot represent a serious problem in the next 

years.  As a last statement of this review, it is possible to note that integration of EEG, MEG and 

fMRI data can be possible by solving the linear inverse problem depicted in the eq. 8 with Wd 

equals to the covariance matrix of the electromagnetic noise and with Wx equals to that described 

in eq. 9.  

In figure 3, we show a representative result obtained from HR-EEG data and HR-EEG combined 

with fMRI data. The recordings were performed during the voluntary movement of the right middle 

finger.  



 
Fig.3 Amplitude grey scale 3-D maps showing linear inverse estimates from high resolution 

electroencephalographic (HREEG) and combined functional magnetic resonance image (fMRI)-

HREEG data computed from a subject about 50 msec before (readiness potential peak, RPp) and 

20 msec after (motor potential peak, MPp) the onset of the electromyographic activity associated 

with self-paced right middle finger movements. A representative axial PC map of statistically 

significant (p<0.05) fMRI signal intensity is also shown as a reference (top). The linear inverse 

estimate of HREEG and combined fMRI-HREEG data were mapped as electric fields forwarded 

over the dura mater compartment of a realistic MRI-constructed subject’s head model. In fMRI 

data statistically activated voxels are represented in white. Percent grey scale (256 hues) of 

HREEG and combined fMRI-HREEG data is normalized with reference to the maximum amplitude 

calculated for each map. Maximum negativity (-100%) is coded in white and maximum positivity 

(+100%) in black. 

 



Appendix I. Electrical forward solution for a realistic head model 

 

Let a head model be constituted by electrically homogeneous and isotropic compartments 

simulating scalp, skull, and dura-mater. The forward solution specifying the potential distribution 

(V) on these compartments Sk (k = 1,...3) due to a dipole is given by the Fredholm integral equation 

of the second kind: 
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where (i) 
 rV


0  is the potential due to a dipole located in an infinite homogeneous medium; (ii) 


j



 

is the conductivity inside the surface Sj of the multi-compartment head model; (iii) 


j



 is the 

conductivity outside the surface Sj; (iv) m is the total number of compartments within the head 

model; and (v)  'rd r


  is the solid angle subtended by the surface element dS located in 


r  (point 

of observation 

r '). A numerical solution of the Fredholm integral equation can be obtained by 

decomposing the surfaces Sk (k = 1,...3) into triangle panels and by using boundary element 

techniques. With the boundary-element techniques, a discrete version of the Fredholm integral 

equation is given by 

 

v = g +  v            (A. 3) 

 

where the elements of matrix , vector v, and vector g are defined as follows: (i) vi is the potential 

value in the center of mass of the i-th triangle; (ii) gi is the potential value generated by a source in 

the center of mass of the i-th triangle; and (iii) ij is the matrix element proportional to the solid 

angle subtended by the j-th triangle at the center of mass of the i-th triangle. The numerical solution 

of the Fredholm integral equation can be improved using the deflation procedure. The linear system 

of equation A.3 is singular since the potential distribution generated on the scalp compartment by an 

equivalent dipole is determined up to a constant. This singularity can be removed by using a 

deflation procedure that yields the potential distribution (V) on the compartment surfaces Sk (k = 

1,...3). 



Appendix II. Magnetic forward solution  
 

The magnetic field of a current dipole in a piecewise homogenous conducting medium is given by 
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     (A. 4) 

 

where (i) B0 is the field of the current dipole in the free space with each surface integral extending 

to an interface between homogeneously conducting media; (ii) n is a unit vector orthogonal to the 

surface Sj; and (iii) the summation index j runs over the surfaces. The surface integrals take into 

account the effects of volume currents. Notice that these currents are equivalent to layers of current 

dipoles orthogonal to the interfaces, with dipole moment per unit area V(
+
-

-
). The magnetic lead 

field matrix was calculated by adding, for each dipole, the free space term and the corresponding 

volume current term. Since a boundary element model was used, the volume currents were modeled 

by an array of fictitious dipoles, located at the centroids of each triangle of the reconstructed 

surfaces, with moment V(
+
-

-
) times the triangle area. 
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