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Over the last decade, there has been a growing interest in the detection of the 

functional connectivity in the brain from different neuroelectromagnetic and 

hemodynamic signals recorded by several neuro-imaging devices such as the 

functional Magnetic Resonance Imaging (fMRI) scanner, electroencephalo-

graphy (EEG) and magnetoencephalography (MEG) apparatus. Many methods 

have been proposed and discussed in the literature with the aim of estimating           

the functional relationships among different cerebral structures. However, the 

necessity of an objective comprehension of the network composed by the 

functional links of different brain regions is assuming an essential role in the 

Neuroscience. Consequently, there is a wide interest in the development and 

validation of mathematical tools that are appropriate to spot significant features 

that could describe concisely the structure of the estimated cerebral networks. 

The extraction of salient characteristics from brain connectivity patterns is an 

open challenging topic, since often the estimated cerebral networks have a 

relative large size and complex structure. Recently, it was realized that the 

functional connectivity networks estimated from actual brain-imaging 

technologies (MEG, fMRI and EEG) can be analyzed by means of the graph 

theory. Since a graph is a mathematical representation of a network, which is 

essentially reduced to nodes and connections between them, the use of a 

theoretical graph approach seems relevant and useful as firstly demonstrated on 

a set of anatomical brain networks. In those studies, the authors have employed 

two characteristic measures, the average shortest path L and the clustering index 

C, to extract respectively the global and local properties of the network 

structure. They have found that anatomical brain networks exhibit many local 

connections (i.e. a high C) and few random long distance connections (i.e. a low 

L). These values identify a particular model that interpolate between a regular 

lattice and a random structure. Such a model has been designated as “small-
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world” network in analogy with the concept of the small-world phenomenon 

observed more than 30 years ago in social systems. In a similar way, many types 

of functional brain networks have been analyzed according to this mathematical 

approach. In particular, several studies based on different imaging techniques 

(fMRI, MEG and EEG) have found that the estimated functional networks 

showed small-world characteristics. In the functional brain connectivity context, 

these properties have been demonstrated to reflect an optimal architecture for 

the information processing and propagation among the involved cerebral 

structures. However, the performance of cognitive and motor tasks as well as the 

presence of neural diseases has been demonstrated to affect such a small-world 

topology, as revealed by the significant changes of L and C. Moreover, some 

functional brain networks have been mostly found to be very unlike the random 

graphs in their degree-distribution, which gives information about the allocation 

of the functional links within the connectivity pattern. It was demonstrated that 

the degree distributions of these networks follow a power-law trend. For this 

reason those networks are called “scale-free”. They still exhibit the small-world 

phenomenon but tend to contain few nodes that act as highly connected “hubs”. 

Scale-free networks are known to show resistance to failure, facility of 

synchronization and fast signal processing. Hence, it would be important to see 

whether the scaling properties of the functional brain networks are altered under 

various pathologies or experimental tasks. The present Chapter proposes a 

theoretical graph approach in order to evaluate the functional connectivity 

patterns obtained from high-resolution EEG signals. In this way, the “Brain 

Network Analysis” (in analogy with the Social Network Analysis that has 

emerged as a key technique in modern sociology) represents an effective 

methodology improving the comprehension of the complex interactions in the 

brain. 

10.1.   Cortical Activity Estimation 

High-resolution EEG technology has been developed to enhance the poor spatial 

information of the EEG activity on the scalp and it gives a measure of the 

electrical activity on the cortical surface. Principally, this technique involves the 

use of a larger number of scalp electrodes (64-256). In addition, high-resolution 

EEG uses realistic MRI-constructed subject head models and spatial de-

convolution estimations which are commonly computed by solving a linear 

inverse problem based on boundary-element mathematics. In the present study, 

the cortical activity was estimated from EEG recordings by using a realistic head 

model, whose cortical surface consisted of about 5000 triangles disposed 

uniformly. 

Each triangle represents the electrical dipole of a particular neuronal 

population and the estimation of its current density was computed by solving the 

linear inverse problem according to techniques described in previous works. In 
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this way, the electrical activity in different Regions Of Interest (ROIs) can be 

obtained by averaging the current density of the various dipoles within the 

considered cortical area. 

10.1.1.   Head models and regions of interest 

In order to estimate cortical activity from conventional EEG scalp recordings, 

realistic head models reconstructed from T1-weighted MRIs are employed. 

Scalp, skull and dura mater compartments are segmented from MRIs and 

tessellated with about 5000 triangles. Then, the cortical regions of interest (ROIs) 

are drawn by a neuroradiologist on the computer-based cortical reconstruction of 

the individual head model by following a Brodmann’s mapping criterion.  

10.1.2.    Estimation of cortical source current density  

The solution of the following linear system: 

 nbAx +=   (10.1) 

provides an estimation of the dipole source configuration x which generates the 

measured EEG potential distribution b. The system includes also the 

measurement noise n, assumed to be normally distributed. A is the lead field 

matrix, where each j-th column describes the potential distribution generated on 

the scalp electrodes by the j-th unitary dipole. The current density solution vector 

ξ of Eq. (10.1) was obtained as: 

 ( )2 2 2arg min || || || ||M NA
x

x b xξ λ= − +  (10.2) 

where M, N are matrices associated to the metrics of data and source space, 

respectively; λ is a regularization parameter; || … ||M represent the M-norm of the 

data space b and || … ||N the N-norm of the solutions space x.  The formula (10.2) 

represents a minimization problem also known as linear inverse problem. 

As a metric of the data space the identity matrix is generally employed. 

However, the metric in the source space can be opportunely modified when 

hemodynamic information is available from recorded fMRI data. This aspect can 

notably improve the localization of the source activity.  An estimate of the signed 

magnitude of the dipolar moment for each one of the 5000 cortical dipoles was 

then obtained for each time point. The instantaneous average of all the dipoles’ 

magnitude within a particular ROI was used to estimate the average cortical 

activity in that ROI during the whole time interval of the experimental task. 
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Figure 10.1 illustrates the effect of the linear inverse problem’s solution. From a 

scalp potential distribution one can estimate accurately the original cortical 

potential. 

 

 

Fig. 10.1. Electrical activity estimation in the Brodmann area 7 from the scalp measurement in the 

parietal sensor P3. 

10.2.   Functional Connectivity Estimation 

Among the linear and nonlinear methods used to estimate functional brain 

connectivity, frequency-based methods are particularly attractive for the analysis 

of EEG or MEG data, since the activity of neural populations is often best 

expressed in this domain. Many EEG and/or MEG frequency-based methods that 

have been proposed in recent years for assessment of the directional influence of 

one signal on another are based mainly on the Granger theory of causality. 

Granger theory mathematically defines what a “causal” relation between two 

signals is. According to this theory, an observed time series x(n) is said to cause 

another series y(n) if the knowledge of x(n)’s past significantly improves 

prediction of y(n); this relation between time series is not necessarily reciprocal, 

i.e., x(n) may cause y(n) without y(n) causing x(n). This lack of reciprocity 

allows the evaluation of the direction of information flow between structures. 

Kaminski and Blinowska proposed a multivariate spectral measure, called the 

Directed Transfer Function (DTF), which can be used to determine the 

directional influences between any given pair of channels in a multivariate 

dataset. DTF is an estimator that simultaneously characterizes the direction and 

spectral properties of the interaction between brain signals and requires only one 

multivariate autoregressive (MVAR) model to be estimated simultaneously from 
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all the time series. The advantages of MVAR modeling of multichannel EEG 

signals in order to compute efficient connectivity estimates have recently been 

stressed. Kus et al. demonstrated the superiority of MVAR multichannel 

modeling with respect to the pair-wise autoregressive approach. Another popular 

estimator, the Partial Directed Coherence (PDC), based on MVAR coefficients 

transformed into the frequency domain was recently proposed, as a factorization 

of the Partial Coherence. The PDC is of particular interest because of its ability 

to distinguish direct and indirect causality flows in the estimated connectivity 

pattern. If another “true” flow exists from region x2 to region x3, the PDC 

estimator does not add an “erroneous” causality flow between the signal recorded 

from region x1 to region x3. This property is particularly interesting in its 

application to brain signals, where the interpretation of a direct connection 

between two cortical regions is straightforward. 

10.2.1.    MultiVariate AutoRegressive models 

The approach based on multivariate autoregressive models (MVAR) can 

simultaneously model a whole set of signals. Let X be a set of estimated cortical 

time series: 

 )](),...,(),([ 21 txtxtxX N=   (10.3) 

where t refers to time and N is the number of cortical areas considered. Given an 

MVAR process which is an adequate description of the data set X: 
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where X(t) is the data vector in time; E(t) = [e1(t),…,eN] is a vector of 

multivariate zero-mean uncorrelated white noise processes; Λ(1), Λ(2),…,Λ(p) 

are the N × N matrices of model coefficients (Λ(0) = I); and p is the model order. 

The p order is chosen by means of the Akaike Information Criteria (AIC) for 

MVAR processes. In order to investigate the spectral properties of the examined 

process, the Eq. (10.4) is transformed into the frequency domain: 
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and ∆t is the temporal interval between two samples. Eq. (10.5) can then be 

rewritten as: 

 )()()()()( 1 fEfHfEffX =Λ= −
 (10.7) 

H(f )  is the transfer matrix of the system, whose element Hij represents the 

connection between  the j-th input and the i-th output of the system. 

10.2.1.1.   Directed transfer function 

The Directed Transfer Function, representing the causal influence of the cortical 

waveform estimated in the j-th ROI on that estimated in the i-th ROI is defined in 

terms of elements of the transfer matrix H, is: 

 ( ) ( )
2

2 fHf ijij =θ   (10.8) 

In order to compare the results obtained for cortical waveforms with different 

power spectra, normalization can be performed by dividing each estimated DTF 

by the squared sums of all elements of the relevant row, thus obtaining the so-

called normalized DTF: 
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γ
2

ij(f) expresses the ratio of influence of the cortical waveform estimated in                

the  j-th ROI on the cortical waveform estimated in the i-th ROI, with respect             

to the influence of all the estimated cortical waveforms. Normalized DTF values 

are in the interval [0 1], and the normalization condition: 

 ( )∑
=

=
N

n

in f
1

2 1γ   (10.10) 

is applied. 

10.2.1.2.   Partial directed coherence 

In order to distinguish between direct and cascade flows, another estimator 

describing the direct causal relations between signals, the Partial Directed 

Coherence (PDC), was proposed in 2001. Like DTF, it is defined in terms of 

MVAR coefficients transformed to the frequency domain. The definition of 

Partial Directed Coherence (PDC) is: 
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The PDC from j to i, πij(f ), describes the directional flow of information from the 

activity in the ROI xj(t) to the activity in xi(t), whereupon common effects 

produced by other ROIs xk(t) on the latter are subtracted leaving only a 

description that is exclusive from xj(t) to xi(t). PDC values are in the interval            

[0 1] and the normalization condition: 
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is verified. According to this condition, πij(f) represents the fraction of the time 

evolution of ROI j directed to ROI i,  as compared to all of j’s interactions with 

other ROIs. Figure 10.2 shows a schematic representation of the functional 

connectivity estimation from a set of high-resolution EEG signals to the cortical 

network.  

 

 

Fig. 10.2.   From a set of cortical time series the MVAR method estimates in the frequency domain 

a functional connectivity pattern that can be modeled by means of a graph. 
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10.2.2.   Adaptive MVAR models 

Among the multivariate methods, the Directed Transfer Function (DTF) and the 

Partial Directed Coherence are estimators characterizing, at the same time, 

direction and spectral properties of the interaction between brain signals, and 

require only one MVAR model to be estimated from all the time series. 

However, the classical estimation of these methods requires the stationarity of the 

signals; moreover, with the estimation of a unique MVAR model on an entire 

time interval, transient pathways of information transfer remains hidden. This 

limitation could bias the physiologic interpretation of the results obtained with 

the connectivity technique employed. To overcome this limitation, different 

algorithms for the estimation of MVAR with time dependent coefficients were 

recently developed. Ding et al., used a short-time windows technique, which 

requires the stationarity of the signal within short-time windows. 

Hesse et al., proposed an application to MVAR estimation of the extension of 

the recursive least squares (RLS) algorithm with a forgetting factor. This 

estimation procedure allows for the simultaneous fit of one mean MVAR model 

to a set of single trials, each one representing a measurement of the same task. In 

contrast to short-window techniques, the multi-trial RLS algorithm does not 

require the stationarity of the signals, and involves the information of the actual 

past of the signal, whose influence decreases exponentially with the time distance 

to the actual samples. The advantages of this estimation technique are an 

effective computation algorithm and a high adaptation capability. It was 

demonstrated in that the adaptation capability of the estimation (measured by its 

adaptation speed and variance) does not depend on the model dimension. 

10.3.   Graph Theory 

A graph is an abstract representation of a network. It consists of a set of vertices 

(or nodes) and a set of edges (or connections) indicating the presence of some of 

interaction between the vertices. The adjacency matrix A contains the 

information about the connectivity structure of the graph. When a weighted and 

directed edge exists from the node i to j, the corresponding entry of the adjacency 

matrix is Aij ≠ 0; otherwise Aij = 0.  

10.3.1.    Network density 

The simplest attribute for a graph is its density k, defined as the actual number of 

connections within the model divided by its maximal capacity; density ranges 
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from 0 to 1, the sparser is a graph, the lower is its value. When dealing with 

weighted networks, a useful generalization of this quantity is represented by the 

weighted-density kw, which evaluates the intensities of the links composing the 

network. The mathematical formulation of the network density is given by the 

following: 

 ∑
∈≠

=
Vji

ijw wAk )(
 (10.13) 

Where A is the adjacency matrix and wij is the weight of the respective arc from 

the point j to the point i. V=1…N is the set of nodes within the graph. 

10.3.2.   Node strength  

In the same way, the simplest attribute of a node is its connectivity degree, which 

is the total number of connections with other vertices. In a weighted graph, the 

natural generalization of the degree of a node i is the node strength or node 

weight or weighted-degree. This quantity has to be split into in-strength sin and 

out-strength sout, when directed relationships are being considered. The strength 

index integrates the information of the links’ number (degrees) with the 

connections’ weight, thus representing the total amount of outgoing intensity 

from a node or incident intensity into it. The formulation of the in-strength index 

sin can be introduced as follows: 

 ∑
∈

=
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ijin wis )(
  (10.14) 

It represents the whole functional flow incoming to the vertex i. V is the set of the 

available nodes and wij is the weight of the particular arc from the point j to the 

point i. In a similar way, for the out-strength: 

 ∑
∈

=
Vj

jiout wis )(
 (10.15) 

It represents the whole functional flow outgoing from the vertex i.  

10.3.3.    Strength distributions  

For a weighted graph, the arithmetical average of all the nodes’ strengths <s> 

only gives little information about the distributions of the links intensity within 

the system. Hence, it is useful to introduce R(s) as the fraction of vertices in the 

graph that have strength equal to s. In the same way, R(s) is the probability that a 
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vertex chosen uniformly at random has weight = s. A plot of R(s) for any network 

can be constructed by making a histogram of the vertices’ strength. This 

histogram represents the strength distribution of the graph and allows a better 

understanding of the strength allocation in the system. In particular, when dealing 

with directed graphs, the strength distribution has to be split in order to consider 

in a separated way the contribution of the incoming and outgoing flows.  

10.3.4.   Link Reciprocity  

In a directed network, the analysis of link reciprocity reflects the tendency of 

vertex pairs to form mutual connections between each other [44]. Here we 

computed the correlation coefficient index ρ proposed by Garlaschelli and 

Loffredo, which measures whether double links (with opposite directions) occur 

between vertex pairs more or less often than expected by chance. The correlation 

coefficient can be written as follows: 
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In this formula, r is the ratio between the number of links pointing in both 

directions and the total number of links, while kw is the connection density that 

equals the average probability of finding a reciprocal link between two connected 

vertices in a random network. As a measure of reciprocity, ρ is an absolute 

quantity that directly allows one to distinguish between reciprocal (ρ > 0) and 

anti-reciprocal (ρ < 0) networks, with mutual links occurring more and less often 

than random, respectively. The neutral or areciprocal case corresponds to ρ = 0. 

Note that if all links occur in reciprocal pairs one has ρ = 1, as expected.  

10.3.5.   Motifs 

By motif it is usually meant a small connected graph of M vertices and a set of 

edges forming a subgraph of a larger network with N > M nodes. For each N, 

there are a limited number of distinct motifs. For N = 3, 4, and 5, the 

corresponding numbers of directed motifs is 13, 199, and 9364.  In this work, we 

focus on directed motifs with N = 3. The 13 different 3-node directed motifs are 

shown in Fig. 10.3. Counting how many times a motif appears in a given network 

yields a frequency spectrum that contains important information on the network 

basic building blocks. Eventually, one can looks at those motifs within the 

considered network that occur at a frequency significantly higher than in random 

graphs.  
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Fig. 10.3. The 13 possible schemes of connectivity that can be achieved in a graph of 3 nodes. 

10.3.6.   Network structure  

Two measures are frequently used to characterize the local and global structure 

of unweighted graphs: the average shortest path L and the clustering index C. The 

former measures the efficiency of the passage of information among the nodes, 

the latter indicates the tendency of the network to form highly connected clusters 

of vertices. Recently, a more general setup has been examined in order to 

investigate weighted networks. In particular, Latora and Marchiori considered 

weighted networks and defined the efficiency coefficient e of the path between 

two vertices as the inverse of the shortest distance between the vertices (note that 

in weighted graphs the shortest path is not necessarily the path with the smallest 

number of edges). In the case where a path does not exist, the distance is infinite 

and e = 0. The average of all the pair-wise efficiencies eij is the global-efficiency 

Eg of the graph. Thus, global-efficiency can be defined as: 

 ∑
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where N is the number of vertices composing the graph. Since the efficiency e 

also applies to disconnected graphs, the local properties of the graph can be 

characterized by evaluating for every vertex i the efficiency coefficients of Ai, 

which is the sub-graph composed by the neighbors of the node i. The local-

efficiency El is the average of all the sub-graphs global-efficiencies: 
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Since the node i does not belong to the sub-graph Ai, this measure reveals the 

level of fault-tolerance of the system, showing how the communication is 

efficient between the first neighbors of i when i is removed. Global- (Eg) and 

local-efficiency (El) were demonstrated to reflect the same properties of the 

inverse of the average shortest path 1/L and the clustering index C. In addition, 

this new definition is attractive since it takes into account the full information 

contained in the weighted links of the graph and provides an elegant solution to 

handle disconnected vertices.  

10.4.   Application to Real Data 

In the following, two applications are presented in order to study the significant 

features of the functional connectivity networks estimated with the use of 

advanced high-resolution EEG methodologies. 

10.4.1.   Cortical network structure in tetraplegics 

The first study aims at analyzing the structure of cortical connectivity during the 

attempt to move a paralyzed limb by a group of spinal cord injured patients. Five 

healthy (CTRL) subjects and five spinal cord injured (SCI) patients participated 

to the present study. In particular, spinal cord injuries were of traumatic etiology 

and located at the cervical level (C6 in three cases, C5 and C7 in two cases, 

respectively); patients had not suffered for a head or brain lesion associated with 

the trauma leading to the injury. The informed consent statement was signed by 

each patient after the explanation of the study, which was approved by the local 

institutional ethics committee. For the EEG data acquisition, subjects were 

comfortably seated on a reclining chair, in an electrically shielded and dimly lit 

room. They were asked to perform a brisk protrusion of their lips while they were 

performing (healthy subjects) or attempting (SCI patients) a right foot movement. 

By means of the lips protrusion, the SCI patients provided an evident trigger in 

correspondence of their attempt to move. For each subject, the cortical activity 

was estimated according to the high-resolution EEG technique (see paragraph 

X.1). By using the passage through the Tailairach coordinates system, twelve 

Regions Of Interest (ROIs) were then obtained by segmentation of the Brodmann 

areas (B.A.) on the accurate cortical model utilized for each subject. Bilateral 

ROIs considered in this analysis are the primary motor areas for foot (MIF) and 

lip movement (MIL), the proper supplementary motor area (SMAp), the standard 

pre-motor area (BA6), the cingulated motor area (CMA) and the associative area 

(BA7). 
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Fig. 10.4. (Up) Average cortical networks in the Beta band for the SCI group and CTRL group.  

(Centre)  Location of the ROIs on the realistic cortex model of a representative subject. (Bottom) 

The SCI group attempted the foot movement, while the CTRL group executed it. 

In order to study the preparation to an intended foot movement, a time 

segment of 1.5 seconds before the lips pursing was analyzed. The lips movement 

was detected by means of an EMG. The task was repeated every 6-7 seconds, in 

a self-paced manner, and the 100 single trials recorded will be used for the 

estimate of functional connectivity by means of the Directed Transfer Function 

(DTF, see paragraph X.2) in four frequency bands  (Theta 4-7 Hz, Alpha 8-12 

Hz, Beta 13-29 Hz, 30-40 Hz). Only the connections that were statistically 

significant (at p < 0.001) after a contrast with a surrogate distribution of one 

thousand DTF values among the same ROIs were considered for the network to 

be analyzed with graph theory’s tools.  Figure 10.4 shows the average cortical 

network estimated in the Beta frequency band for the SCI group and for the 

CTRL group, during the motor attempt/execution of the task. The twelve ROIs 

(the nodes of the cortical network) are indicated on the cortex of one 

representative subject.  

The upper panels of Fig. 10.5 show the average in- and out-degree in the SCI 

population a) and in the CTRL group b) for the significant Beta band. Direct 

comparisons of the data show that in the SCI patients the number of links 
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outgoing from both the SMAp areas Left and Right is largely higher than the 

CTRL subjects. This result puts in evidence the important role of the 

supplementary motor areas (SMAp Left and Right) that increase their outgoing 

functional flows to support the diminished activity of their primary motor areas  

(MIF Left and Right) during the preparation of this motor act. 

The panels at the bottom of Fig. 10.5 show the average profiles of the degree 

distributions for SCI and CTRL group, in the Beta frequency band. An 

interesting result is that in-degree and out-degree distributions show different 

trends within each group. 

 

 

Fig. 10.5. (a) Average in- and out-degrees for the SCI group in the Beta frequency band. 

(b) Average in- and out-degrees for the CTRL group in the Beta frequency band. (c) Average                 

in- and out-degree distributions for the SCI group in the Beta frequency band. (d) Average in- and 

out-degrees distributions for the CTRL group in the Beta frequency band. 

 

Right-skew tails of out-degree distributions indicates the presence of few 

nodes with a very high level of outgoing connections, while for the in-degree 

distributions there are no ROIs in the network with more than six incoming 

connections. The inset in each figure illustrates the typical Gaussian profile of      

the degree-distributions in random graphs, which appears to be different from 
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Fig. 10.6. Scatter plot of global- and local-efficiency for SCI networks, CTRL networks and 

random networks. The Greek symbol codes the average value in a particular frequency band. Black 

dots identify the values from a distribution of 1000 random graphs. 

 

the estimated cortical networks. Figure 10.6 shows the contrast between the 

values of global and local efficiency obtained in the two studied populations with 

those obtained in a set of one thousand random graphs, having the same number 

of nodes and arcs.  

Analysis of variance (ANOVA p = 0.05) was used in order to find significant 

differences between the indices of efficiency indexes computed in the two groups 

(SCI, CTRL) for all the frequency bands (Theta, Alpha, Beta and Gamma). 

ANOVA performed on the global-efficiency Eg variable showed no significant 

differences for the main factors GROUP and BAND. Instead, the ANOVA 

performed on the El variable revealed a strong influence of the between factor 

GROUP (F = 32.67, p = 0.00045); while the BAND factor and the interaction 

between GROUP X BAND were found not significant (F = 0.21 and F = 0.91 

respectively, p values equal to 0.891 and 0.457). Post-hoc tests revealed a 

significant difference between the two examined experimental groups (SCI, 

CTRL) in Theta, Alpha and Beta band (p = 0.006, 0.01, 0.03 respectively). It can 

be observed (Fig. 10.6) that the average values of the local efficiency in the SCI 

subjects are significantly higher than those obtained in the CTRL group, for these 

three frequency bands. The higher value of local efficiency El implies that the 

network tends to form clusters of ROIs which hold an efficient communication. 
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These efficient clusters, noticed in the SCI group, could represent a compensative 

mechanism as a consequence of the partial alteration in the primary motor areas 

(MIF) due to the effects of the spinal cord injury. Moreover, the estimated 

cortical networks are not structured like random networks. The statistical 

contrasts performed by separate Z-tests (Bonferroni corrected for multiple 

comparisons, p = 0.05) were summarized in the Table 10.1.  

By inspecting the data presented in both Table 10.1 and Fig. 10.6, it is clear 

that in general the cortical networks exhibited ordered and regular properties. In 

particular, the global efficiency is significantly lower than the random mean 

value, while the local efficiency of the SCI group is significantly higher than 

random graphs in each band, meaning fault tolerance is privileged with respect to 

global communication. 

 
Table 10.1. Z-scores of Eg and El from the contrasts with 1000 random graphs. 

Z 

Values 

SCI- 

Theta 

SCI- 

Alpha 

SCI- 

Beta 

SCI-

Gamma 

Healthy-

Theta 

Healthy-

Alpha 

Healthy-

Beta 

Healthy-

Gamma 

Eg –237.45 –250.13 –262.88 –267.07 –249.81 –238.21 –225.95 –223.4 

El 57.714 53.314 57.025 38.936 –15.99 –11.051 7.163 21.674 

10.4.2.   Time-varying cortical network during foot movement 

The second study intends to evaluate the dynamics of the cerebral networks 

during the preparation and the execution of the foot movement in healthy 

subjects.  Five voluntary subjects participated to the study (age, 26-32 years; five 

males). For the EEG data acquisitions, the participants were comfortably seated 

on a reclining chair in an electrically shielded and dimly lit room. They were 

asked to perform a dorsal flexion of their right foot, whose preference was 

previously attested by simple questionnaires (Chapman 1987). The movement 

task was repeated every 8 seconds, in a self-paced manner and 200 single trials 

were recorded by using 200 Hz of sampling frequency. Cortical activity was 

estimated through high-resolution EEG techniques (see paragraph X.1). The 

ROIs considered for the left (_L) and right (_R) hemisphere are the primary 

motor areas of the foot (MF_L and MF_R), the proper supplementary motor 

areas (SM_L and SM_R) and the cingulate motor areas (CM_L and CM_R). The 

bilateral Brodmann areas 6 (6_L and 6_R), 7 (7_L and 7_R), 8 (8_L and 8_R),              

9 (9_L and 9_R) and 40 (40_L and 40_R) were also considered. In order to 

inspect the brain dynamics during the preparation and the execution of the 

studied movement, a time segment of 2 seconds was analyzed, after having 
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Fig. 10.7. (Up) Realistic head model for a representative subject and cortical activity for the ROIs 

in the left hemisphere. (Bottom) Three-dimensional representation of the estimated time-varying 

network in the Beta band for the same subject. 

 

centered it on the onset detected by a tibial EMG. The use of the time-varying 

Partial Directed Coherence (PDC, see paragraph X.2) to the cortical waveforms 

obtained from EEG signals returned a cortical network for each selected time 

sample and frequency band. In order to consider only those task-related 

connections, a filtering procedure based on statistical validation was adopted. In 

each trial, a rest period of 2 seconds preceding the movement was selected as an 

element of contrast (from -4 to -2 s before the onset, i.e. the moment in which the 

movement occurs). Figure 10.7 illustrates the locations of the regions of interest 

(ROIs) on the left hemisphere of the cortex model together with their estimated 

temporal activity. At the bottom, the time-varying cortical network in the Beta 

frequency band is shown for a representative subject. In particular, three instants 

are highlighted; one second before the onset, the onset itself and one second after 

the onset. 

Figure 10.8a) shows the in-strength values for the average network during 

three moments of interest that presented significant differences from random 

networks. Among all the cortical regions, the supplementary motor areas of both 
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Fig. 10.8. Average in- and out-strength in the Beta band during three significant moments. The 

little spheres are located in correspondence of each ROI. The size and color of each sphere encodes 

the degree value. 

 

hemispheres (SM_L and SM_R) show the highest values of in-strength index. In 

the time points that precedes the onset movement (-560 ms) also the right and left 

primary motor areas of the foot (MF_L and MF_R) present a considerable 

number of incoming functional links. Figure 10.8b) shows the average values of 

out-strength obtained during the three time points of interest. In this particular 

case, it is evident that the large part of the cortical areas does not produce 

outgoing edges, while the bilateral cingulate motor region (CM_L and CM_R) 

presents very high out-strength values. All the indexes calculated on the cortical 

networks were standardized by considering their Z-score with respect to the 

distribution obtained from 50 random graphs.  

Figure 10.9 shows the average Z values in the analyzed population for the 

time-varying in- strength Rin and out-strength Rout distributions in the 

representative Beta frequency band. An interesting result is that in-strength (Rin) 

and out-strength (Rout) distributions show different characteristics. The high Z-

scores in correspondence with the high values of Sout (i.e. the “right tail” of the 

distribution) suggest the presence of few ROIs with a very high level of outgoing 

flows, which makes them act as cortical “hubs”. In particular, the intensity of 

their outgoing links seems to increase as time elapses from the movement  
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Fig. 10.9. (a) Average time-varying in-strength distributions fro the Beta band. The latency from 

the movement onset is shown on the x-axes; the in-strength (Sin) values on the y-axes. The colour 

encodes the group-averaged intensity of the Rin Z-score. (b) Average time-varying out-strength 

distributions fro the Beta band. Same conventions as above. 

 

preparation to the movement execution, as revealed by the respective shift of the 

significant Z values towards high levels of out-strength. 

The level of organization in the time-varying cortical networks during the foot 

movement was analyzed by computing the efficiency indexes Eg and El. The Eg 

and El indexes estimated in every subject from the respective cortical networks 

were contrasted with the ones obtained from the respective random structures. 

Figure 10.10 shows the average Z-scores of the time-varying Eg (solid line) and 

El - (dotted line) of the connectivity patterns in the Beta frequency band. In 

particular, one second before the onset (from about -1 to -0.5 s), the cortical 

networks mostly show low values of Eg and El, reflecting a weak pattern of 

communication characterized by long average distances and few clustering 

connections between the ROIs. Throughout the period closer to the execution of 

the movement (from about -0.5 s to the onset), both the global and local 

properties increase and in correspondence with it, we observe high values of Eg 

and El.  
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Fig. 10.10. Average time-varying efficiency indexes. The lighter lines around the mean value 

indicate the time courses of the 25th and 75th percentile. The latency from the movement onset is 

shown on the x-axes. 

 

Consequently the structure of the cortical networks tends to maximize the 

interplay between the global integration and its local interactions. This particular 

structure represents one of the best way in which the cortical areas communicate, 

since the relevant network presents simultaneously short links between each pair 

of ROIs and highly connected clusters (i.e. small-world architecture). After the 

onset (from the onset to +0.5 s), the estimated cortical networks show a typical 

random organization of the functional links, with a high Eg and a low El, 

reflecting the dense presence of wide-scope interactions among the ROIs, but a 

low tendency of the same cortical regions to form functional clusters. In the last 

period of the movement execution (from about +0.5 to +1 s) the estimated 

cortical networks mainly show high El values and low Eg values. The resulting 

structure is known to reflect the properties of regular and ordered graphs in 

which the local property of clustering is privileged with respect to the overall 

communication. Figure 10.11(a) shows the average time-varying course of the 

weighted-density kw in the Beta band during the analyzed period of interest.  

In particular, the average intensity of the network links during the preparation 

(from -0.5 s to the onset) is relatively low if compared with its maximum value 

reached in the following movement execution. In correspondence with this 

period the network structure presents the most efficient pattern of 

communication, as revealed by the estimated small-world characteristic. 
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Therefore, it is interesting to note that the optimal organization of the functional 

links among the cortical areas during the preparation of the foot movement is not 

correlated to the need of a high level of overall connectivity.  

 

 

Fig. 10.11. (a) Average time-varying “weighted-density” in the Beta band. (b) Average time-

varying “reciprocity” during the period of interest in the Beta band. On y-axes the correlation 

coefficient ρ while time in seconds on x-axes.  

 

The analysis of the average time-varying reciprocity index revealed an 

interesting behavior during the preparation (from about -1 to 0 s) of the 

movement in the Beta frequency band. In such a period, the functional network 

moved from a reciprocal (r = 0.1) to an anti-reciprocal (r = -0.1) state. This aspect 

emphasizes the role of the early preparation in which a high level of mutual 

exchange of information is required to speed up the cortical process in 

expectation of the execution. Moreover, by tracking the evolving involvement of 

each single reciprocal connection (see Fig. 10.12(a)) it is possible to observe their 

“persistence” during the entire period of interest. In particular, the persistent 

bilateral links between the cingulate motor areas and the supplementary motor 

areas (they correspond to the rows 58 and 69) in the Beta band reveals a novel 

aspect of such a connection that anyway was expected in a self-paced modality of 

movement generation, as in our experimental condition. 
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Fig. 10.12. (a) Time-varying persistence of the bilateral connections in the cortical network.  On            

y-axes all the 120 possible reciprocal connections while time in seconds on x-axes. The colour of 

the line corresponding to a particular link codes the number of subjects that actually hold such                   

a connection. (b) Average time-varying 3-motif spectra. On y-axes all the 13 possible directed                

3-motifs are listed while time in seconds is displayed on x-axes. 

 

In Figure 10.12(b), we compared the 3-motif properties of real brain networks 

with random networks and we identified some motif classes that occurred more 

frequently during particular stages of the movement. Of particular interest is the 

involvement of the feed-forward-loop motif (the fifth in the Figure 10.4) that 

tends to significantly (p < 0.01) increase during the proper movement execution 

(from about 0 to +1 s). This type of building block is known to play an important 

functional role in information processing. In fact, one possible function of this 

circuit is to activate output only if the input signal is persistent and to allow a 

rapid deactivation when the input goes off. In the cortical context, a possible 

interpretation of such a motif would make a particular ROI act as a “switch” for 

the communication between the others two ROIs composing the triad. Another 

interesting aspect was revealed by the significant (p<<0.01) “persistence” of the 

single-input motif (the third in the Figure 10.4) that represented the highest 

recurrent pattern of interconnections during the entire evolution of the foot 

movement. The main function of this motif is known to involve the “activation” 

of several parallel pathways by a single activator. Thus, since the single-input 
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only differs from the feed-forward-loop motif for the functional link between the 

two areas activated, we can claim the privileged scheme of communication 

within the functional networks estimated consists in a parallel activation from a 

particular ROI of two other distinct areas, whose communication seems to 

increase significantly only during the proper movement execution.  

10.5.   Conclusions 

One of the interesting characteristics of the brain networks presented in this 

Chapter is that such networks have no precise anatomical support, i.e. there is no 

particular cerebral structure that implements the network itself. Thus, those brain 

networks represent functional networks, which could change in topology and 

properties according to the specific subject’s behavior. Another attractive 

characteristic is that these functional networks are estimated from high-resolution 

EEG signals. This allows the representation of the graph nodes as particular 

regions of interest on the cortex. This approach gives to the researcher a 

“window” to access the brain functions in a different perspective than the usual 

techniques encountered in the neuroscience literature. 

In fact, the development of brain imaging devices (such as the functional 

Magnetic Resonance Imaging (fMRI), but also the high-resolution EEG 

technology) often give to the scientist a series of colored hot-spots in the brain 

that sub-serve the functions performed by the subject during a particular task. 

Actually, if we look at thousands of fMRI studies a possible impression is that a 

specific cortical area gets “activated” during the performance of whatever 

cognitive or motor operation. In this scenario of modern “color phrenology”, the 

study of functional cortical connectivity suggests an image of the brain as a 

system of objects that rapidly changes the way in which they are interconnected, 

according to the complexity and to the dynamic of the task proposed to the 

subject. It is opinion of the Authors that the perspective offered by the use of 

graph theory to the functional cortical connectivity networks estimated from 

high-resolution EEG recordings could be a promising way to approach the brain 

functioning from a modern point of view. 
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