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Brain–computer interface (BCI) applications were initially designed to pro-

vide final users with special capabilities, like writing letters on a screen, to

communicate with others without muscular eVort. In these last few years, the

BCI scientific community has been interested in bringing BCI applications

outside the scientific laboratories, initially to provide useful applications in every-

day life and in future in more complex environments, such as space. Recently, we

implemented a control of a domestic environment realized with BCI applications.

In the present chapter, we analyze the methodological approach employed to

allow the interaction between subjects and domestic devices by use of noninvasive

EEG recordings. In particular, we analyze whether the cortical activity estimated

from noninvasive EEG recordings could be useful in detecting mental

states related to imagined limb movements. We estimate cortical activity from
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high-resolution EEG recordings in a group of healthy subjects by using realistic

head models. Such cortical activity was estimated in a region of interest associated

with the subjects’ Brodmann areas by use of depth-weighted minimum norm

solutions. Results show that the use of the estimated cortical activity instead of

unprocessed EEG improves the recognition of the mental states associated with

limb-movement imagination in a group of healthy subjects. The BCI methodolo-

gy here presented has been used in a group of disabled patients to give them

suitable control of several electronic devices disposed in a three-room environ-

ment devoted to neurorehabilitation. Four of six patients were able to control

several electronic devices in the domotic context with the BCI system, with a

percentage of correct responses averaging over 63%.
I. Introduction
Brain–computer interfaces (BCI) is an area of research that is rapidly growing

in the neuroscience and bioengineering fields. One popular approach to the

generation of a BCI system consists of the recognition by a computer of the

patterns of electrical activity on the scalp gathered from a series of electrodes. One

of the problems related to the use of surface EEG is the blurring eVect owing to

the smearing of the skull on the transmission of the potential distribution from the

cerebral cortex toward the scalp electrodes. This happens since the skull has very

low electrical conductivity compared with the scalp or the brain. The blurring

eVect makes the EEG data gathered from the scalp electrodes rather correlated, a

problem not observed in the cortical EEG data recorded from the invasive

implants in monkeys and people. Such correlation makes the work of classifiers

problematical, since the features extracted from the diVerent scalp electrodes tend
to be rather similar and this correlation is hard to disentangle with blind methods

like principal component analysis.

In this last decade, high-resolution EEG technologies have been developed to

enhance the spatial information content of EEG activity (Gevins et al., 1990;

Nunez, 1995). Furthermore, since the ultimate goal of any EEG recording is to

provide useful information about the brain activity, a body of mathematical

techniques, known as inverse procedures, has been developed to estimate the

cortical activity from raw EEG recordings. Examples of these inverse procedures

are dipole localization, distributed source, and cortical imaging techniques

(Babiloni et al., 2001; Dale and Sereno, 1993; Gevins et al., 1990; Nunez, 1995).

Inverse procedures can use linear and nonlinear techniques to localize putative

cortical sources from EEG data, by using mathematical models of the head as

volume conductors.
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More recently it has been suggested that with the use of the modern high-

resolution EEG technologies it could be possible to estimate the cortical activity

associated with the mental imagery of the upper limb movements in humans

better than with the scalp electrodes (Babiloni et al., 2001; Cincotti et al., 2002).

We currently use the approach to estimate the cortical current density in a

particular region of interest (ROI) on the modeled brain structures from high-

resolution EEG recordings to provide high-quality signals for the extraction of the

features useful for a BCI system.

In this chapter, we would like to illustrate how with the use of such advanced

high-resolution EEG methods for estimating cortical activity it is possible to run a

BCI system able to drive and control several devices in a domotic environment. In

particular, we first describe a BCI system used on a group of healthy subjects in

which the technology of the estimation of the cortical activity is illustrated. Then

we demonstrate use of the BCI system to command several electronic devices

within a three-room environment designed for neurorehabilitation. The BCI

system was tested by a group of six patients.
II. Methodology
A. SUBJECTS

Two groups of subjects were involved in training on the BCI system. One was

composed of healthy subjects while the second one was composed of disabled

persons who used the BCI system to attempt to drive electronic devices in a three-

room facility at the laboratory of the Fondazione Santa Lucia in Rome. The first

group was composed of 14 healthy subjects who voluntarily participated in the

study. The second group of subjects comprised six patients aVected by Duchenne

muscular dystrophy. According to the Barthel index score (BI) for daily activity,

all patients depended almost completely on caregivers, having a BI score <35.

In general, all patients were unable to walk since they were already adolescent,

and their mobility was possible only by means of a wheelchair. This latter was

electric in the cases of all (except two) patients and it was driven by a modified

joystick which could be manipulated by either the residual ‘‘fine’’ movements of

the first and second fingers or the residual movements at wrist. As for the upper

limbs, all patients had a residual muscular strength either of proximal or distal

arm muscles that was insuYcient for carrying on any everyday life activity.

The neck muscles were so weak as to require a mechanical support to maintain

the posture in all of them. Finally, eye movements were substantially preserved

in all of them. At the moment of the study, none of the patients was using

technologically advanced aids.
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B. PATIENTS’ PREPARATION AND TRAINING

Patients were admitted for a neurorehabilitation program that also included

the use of a BCI system on a voluntary basis. Caregivers and patients gave

informed consent for the recordings in agreement with the ethical committee

rules adopted for this study. The rehabilitation programs aimed to allow patients

the use of a versatile system for the control of several domestic devices by using

diVerent input devices, tailored to the disability level of the final user. One of the

possible inputs for this system was the BCI through EEG modulation.

The first step of the clinical procedure consisted of an interview and physical

examination performed by the clinicians, wherein several levels of the variables of

interest (and possible combinations) were addressed as follows: the degree of

motor impairment and of reliance on the caregivers for everyday activities, as

assessed by the current standardized scale, that is, the BI for ability to perform

daily activities; familiarity with transducers and aids (sip/puV, switches, speech
recognition, joysticks) that could be used as input to the system; the ability to speak

or communicate and be understood by an unfamiliar person; the level of infor-

matics alphabetization, measured by the number of hours/week spent in front of

a computer. Information was structured in a questionnaire administered to the

patients at the beginning and end of the training. A level of system acceptance by

the users was schematized whereby users were asked to indicate with a number

ranging from zero (not satisfactory) to five (very satisfactory) their degree of

acceptance relative to each of the controlled output devices. The training con-

sisted of weekly sessions over 3–4 weeks, in which the patient and (when required)

patient’s caregivers were practicing with the system. During the whole period,

patients had the assistance of an engineer and a therapist in their interaction with

the system.
C. EXPERIMENTAL TASK

Both healthy volunteers and patients were trained in using the BCI system to

control the movement of a cursor on the screen on the base of the modulation of

their EEG activity. A description of the experimental task performed by all of

them during the training follows. Each trial consisted of four phases:

1. Target appearance: a rectangular target appeared on the right side of the

screen, covering either the upper or the lower half of the side.

2. Feedback phase: one second after the target, a cursor appeared in the middle

of the left side of the screen and moved at a constant horizontal speed to

the right. Vertical speed was determined by the amplitude of sensorimotor

rhythms (see Section II.G). A cursor sweep lasted about 3 s.
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3. Reward phase. If the cursor successfully hit the target, the latter flashed for

about 1 s. Otherwise, it just disappeared.

4. Intertrial interval. The screen stayed blank for about 2 s, in which the subject

was allowed to blink and swallow.

Subjects were aware that the increase or decrease of a specific rhythm in their

EEGproduced amovement of the cursor toward the top or the bottom of the screen.

They were advised to concentrate on kinesthetic imagination of upper limb move-

ments (e.g., fist clenching) to produce a desynchronization of the mu rhythm on

relevant channels (cursor up), and to concentrate on kinesthetic imagination of lower

limb movements (e.g., repeated dorsiflexion of ankle joint) to produce a contrasting

pattern (with possible desynchronization of mu/beta rhythm over the mesial chan-

nels, cursor down).With this simple binary task as a performancemeasure, training is

meant to improve performances from 50–70 to 80–100% of correct hits.
D. EXPERIMENTAL TRAINING

The BCI training was performed using the BCI2000 software system (Schalk

et al., 2004). An initial screening session was used to define the ideal locations and

frequencies of each subject’s spontaneous mu- and beta-rhythm activity. During

this session, the subject was provided with any feedback (any representation of

her/his mu rhythm), and she/he had to perform motor tasks just in open loop.

The screening session consisted of the alternate and random presentation of cues

on opposite sides of the screen (either up/down-vertical or left/right-horizontal).

In two subsequent runs, the subject was asked to execute (first run) or to image

(second run) movements of her/his hands or feet upon the appearance of top or

bottom targets, respectively. This sequence was repeated three times. From the

seventh run on, the targets appeared on the left or right side of the screen, and the

subject was asked to move (odd trials) or to image (even trials) his/her hands for a

total of 12 trials. The oV-line analysis based on pairs of contrasts for each task was

aimed at detecting two, possibly independent, groups of features, which would be

used to train the subject to control two independent dimensions in the BCI.

Analysis was carried out by replication of the same signal conditioning and feature

extraction that was also used in the online processing (training session). Data sets

were divided into epochs (usually 1 s long) and spectral analysis performed by

means of a maximum entropy algorithm, with a resolution of 2 Hz.

DiVerently from the online processing, when the system only computes the

few features relevant for BCI control, all possible features in a reasonable range

were extracted and analyzed simultaneously. A feature vector was extracted from

each epoch, composed of the spectral value at each frequency bin between 0 and

60 Hz, for each spatially filtered channel. When all features in the two data sets
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under comparison had been extracted, a statistical analysis was performed to

assess significant diVerences in the values (epochs) of each feature in the two

conditions. Usually a r2 analysis is performed, but in the case of 2-level indepen-

dent variables (as in this case: Tasks ¼ {T1, T2}), t-test, ANOVA and other test

provide analogous results. At the end of this process, the results were available

(channel-frequency matrix and head topography of r2 values) and evaluated to

identify the most promising set of features to be enhanced with training.

Using information gathered from the oV-line analysis, the experimenter set

the online feature extractor so that a ‘‘control signal’’ was generated from the

linear combination of the time-varying value of these features and then passed to a

linear classifier. The latter’s output controlled how the position of the feedback

cursor was updated. During the following training sessions, the subjects were thus

fed back with a representation of their mu-rhythm activity, so that they could

learn how to improve its modulation.

Each session lasted about 40 min and consisted of eight 3-min runs of 30 trials.

The task was increased in diYculty during the training, so two broadly diVerent
task classes could be defined.

During the training sessions, subjects were asked to perform the same kines-

thetic imagination movement they were asked to do during the screening session.

An upward movement of the cursor was associated with the bilateral decrease of

mu rhythm over the hand area (which usually occurs during imagination of upper

limb movement). Consequently, the (de)synchronization pattern correlated to

imagination of lower limb movements made the cursor move downward. On

the same principle, the horizontal movement of the cursor to the left (right) was

linked to the lateralization of mu rhythm owing to imagination of movement of

the left (right).Two diVerent control signals were defined. The vertical control

signal was obtained as the sum of the mu rhythm’s amplitude over both hand

motor areas; the value of the mu rhythm’s amplitude over the foot area was

possibly subtracted (depending on the individual subject’s pattern). The horizon-

tal control channel was obtained as the diVerence between the mu rhythm’s

amplitude over each hand’s motor area.

During the first 5–10 training sessions, the user was trained to optimize

modulation of one control signal at a time, that is, overall amplitude (‘‘vertical

control’’) or lateralization (‘‘horizontal control’’) of the mu rhythm. Each control

channel was associated with vertical or horizontal movement of a cursor on the

screen, respectively.

For the training of ‘‘vertical’’ control, the cursor moved horizontally across the

screen from left to right at a fixed rate, while the user controlled vertical move-

ments toward appearing targets, justified at the right side of the screen. Similarly,

for the training of ‘‘horizontal’’ control, the cursor moved vertically across the

screen from top to bottom at a fixed rate, while the user controlled horizontal

movements toward appearing targets, justified at the bottom side of the screen.
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This phase was considered complete when the healthy subjects reached a

performance of 70–80% correct hits (60–65% for patients) on both monodimen-

sional tasks. In the case of bidimensional tasks, performed only by the healthy

subjects, the cursor appeared in the center, and its movement was entirely

controlled by the subject, using both control channels (‘‘horizontal’’ and

‘‘vertical’’) simultaneously.
E. DOMOTIC SYSTEM PROTOTYPE FEATURES

The core system that disabled patients attempted to use to drive electronic

devices in a three-room laboratory was implemented as follows. It received logical

signals from several input devices (including the BCI system) and converted them

into commands that could be used to drive the output devices. Its operation was

organized as a hierarchical structure of possible actions, whose relationship could

be static or dynamic. In the static configuration, it behaved like a ‘‘cascadedmenu’’

choice system and was used to feed the feedback module only with the options

available at the moment (i.e., current menu). In the dynamic configuration, an

intelligent agent tried to learn from use the most probable choice the user would

make. The user could select the commands and monitor the system behavior

through a graphic interface. The prototype system allowed the user to operate

electric devices remotely (e.g., TV, telephone, lights, motorized bed, alarm, and a

front door opener) as well as monitoring the environment with remotely controlled

video cameras. While input and feedback signals were carried over a wireless

communication, so that the mobility of the patient was minimally aVected, most

of the actuation commands were carried via a powerline-based control system.

As described above, the generated system admits the BCI is one possible way to

communicate with it, being open to accept command by other signals related to

the residual ability of the patient. In this study, however, we report only the

performance of the patients with the BCI system in the domotic applications.
F. ESTIMATION OF THE CORTICAL ACTIVITY FROM EEG RECORDINGS

For all healthy subjects analyzed in this study, sequential MR images were

acquired and realistic head models were generated. For all the patients involved in

this study, owing to the lack of their MR images, we used the Montreal average

head model. Figure 1 shows a realistic head model generated for a particular

experimental subject, together with the high-resolution electrode array that was

employed. Scalp, skull, dura mater, and cortical surfaces of the realistic and

average head models were obtained. The surfaces of the realistic head models

were then used to build the boundary element model of the head as volume



FIG. 1. A realistic head model employed for the estimation of the cortical activity. Three layers are

displayed namely representing dura mater, skull, and scalp. Also the electrode positions are visible on

the scalp surface.
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conductor employed in the present study. Conductivity values for scalp, skull, and

dura mater were those reported previously (Oostendorp et al., 2000). A cortical

surface reconstruction was accomplished for each subject’s head with a tessella-

tion of about 5000 triangles on average, while the average head model had about

3000 triangles.

The estimation of cortical activity during the mental imagery task was per-

formed in each subject by use of the depth-weighted minimum norm algorithm

(Babiloni et al., 2000, 2003). Such estimation returns a current density estimate for

each one of the thousand dipoles constituting the modeled cortical source space.

Each dipole returns a time-varying amplitude representing the brain activity of a

restricted patch of cerebral cortex during the entire task time-course. This rather

large amount of data can be synthesized by computation of the total average of all

the dipole magnitudes belonging to the same cortical ROI. Each ROI was defined

according to each subject’s cortical model adopted in accordance with its Brod-

mann areas (BAs). Such areas are regions of the cerebral cortex whose neurons

share the same anatomical (and often also functional) properties. Actually, such

areas are largely used in neuroscience as a coordinate system for sharing cortical

activation patterns found with diVerent neuroimaging techniques. In the present

study, the activity in the following ROI was taken into account: the primary left

and right motor area, related to the BA 4, the left and right primary somatosen-

sory and supplementary motor areas.
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G. ONLINE PROCESSING

Digitized EEG data were transmitted in real time to the BCI2000 software

system (Schalk et al., 2004), which performed all necessary signal processing and

displayed feedback to the user. The processing pipe can consist of several stages,

which process the signal in sequence. Only the main ones will be mentioned

below: spatial filter, spectral feature extraction, feature combination, and

normalization.

Spatial filter. A general linear combination of data channels was implemented

by defining a matrix of weights multiplied by each time sample of potentials

(vector). This allowed implementation of diVerent spatial filters, such as the

estimation of cortical current density waveforms on the cortical ROIs, by use of

weights derived as explained in Section II.

Spectral feature extraction was performed every 40 ms, using the latest 300 ms of

data. An autoregressive spectral estimator, based on the maximum entropy

algorithm, yielded an amplitude spectrum with resolution of 2 Hz. Maximum

frequency was limited to 60 Hz.

Feature selection and combination. A small subset of those spectral features (fre-

quency bins � EEG channels or ROIs) that were significantly modulated by the

motor imagery tasks was linearly combined to form a single control signal.

Selection of responsive channels and frequency bins, and determination of com-

bination weights, took place before each online session (see Section II.H). In

general, only two or three spectral amplitude values (depending on individual

patterns) were generally used to obtain the control signal.

Normalization. The control channel was detrended to avoid cursor bias, and

scaled so that the resulting vertical deflection of the feedback cursor was

visible but not saturated. In fact, the vertical position of the cursor was updated

every 40 ms by a number of pixels (positive or negative) equal to the output by this

stage. Normalization was adaptive, and based on the estimate of the moving

average and standard deviation of the control signal. During the very first session

of each subject (screening session), since no oV-line analysis was available to guide
feature selection and combination, the subject was given no online feedback

(targets only).
H. OFF-LINE ANALYSIS

After artifact rejection, the EEG intervals corresponding to the feedback

phase were binned into two classes—up or down, depending on the target

appearing in each trial. The spatial filtering and feature extraction stages of the

online processing were replicated. Since no feedback delay issue had to be

considered during the oV-line analysis, spectral estimation was computed on
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1-s-long epochs, overlapped by 50% (i.e., only five spectral estimates had to be

computed for each 3-s-long trial, yielding about 600 spectral estimates per class

for the whole session).

For each of the EEG channels or ROI waveforms employed, and for each one

of the 30 frequency bins in which the EEG spectral interval was divided, a

contrast was performed, to assess statistically significant modulations induced in

a specific feature. To this end, we computed for each feature (dependent variable)

the coeYcient of determination (r2), that is, the proportion of the total variance of

the feature samples accounted for by target position. This index had been

previously utilized in literature for similar experimental setups (Wolpaw et al.,

2002) and allows direct comparison with published results. A fictitious indepen-

dent variable was created, using valuesþ1 or�1 in correspondence of ‘‘down’’ or

‘‘up’’ epochs, respectively. A negative sign was attributed to the r2 value when

dependent and independent variables were contravariant. If we look at statistical

results from a diVerent perspective, features characterized by a high r2 value are

those that maximize prediction of the current target. Higher values of r2 indicate

that the subject has gained steadier control of EEG rhythms (in fact they generally

increase during the training, from values below 0.1 to values above 0.3).
III. Results
A. EXPERIMENTATION WITH HEALTHY SUBJECTS

By applying the aforementioned signal processing techniques in the context of

the proposed BCI setup, we used the r2 as an index of reliability of the recognition

of subjects’ mental activity. The comparisons between the maximum values of the

r2 that takes into account the best usable feature (frequency/ROI or scalp

channel) were performed for the unprocessed EEG data as well as for the

estimated cortical activity by use of the procedure already described above.

Mean r2 is 0.20 � 0.114 SD for the unprocessed EEG case, 0.55 � 0.16 SD for

the cortical current density estimation case. The diVerences are relatively constant
across the subjects, and a paired Student’s t test returned a highly significant

diVerence between the two conditions (p < 10–5). Once all the healthy subjects

had completed the training, we chose the two with the best performance and

trained them to use a diVerent BCI application, namely the old game of electronic

ping-pong.

Figure 2 shows a sequence with two subjects who played a ping-pong game

with the use of the BCI system realized through the guidelines provided above.

The subjects are able to control the movement of the vertical cursors while the

white cursor, simulating the ball, moves across the screen. The sequence reads



FIG. 2. Sequence of two healthy subjects that play the ping-pong with the use of the BCI described

in the text. Subjects control the cursor movement along the vertical directions. Sequence from (A) to (B).
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from A to B. The two subjects are able to control the device by performing 95 and

96% of successful hits during a game lasting several minutes, with a rate of about

five correct hits per minute per subject.
B. EXPERIMENTATION WITH THE PATIENTS

As described previously in Section II, all the patients underwent a standard

BCI training. In 8–12 sessions of training, four out of six patients were able to

develop a sensorimotor reactivity suYciently stable to control the cursor with

performance in excess of 63%. They could image either foot or hand movements

and the related sensorimotor modulation was mainly located at midline centro-

parietal electrode positions. Two patients were not able to control the cursor with

a percentage superior to 55% and were not taken into consideration further here

in the context of the use of the BCI system. At the end of the training, the four

patients were able to control the several system outputs, namely the domotic

appliances. According to the early results of the questionnaire, these patients were

independent in the use of the system at the end of the training and they experi-

enced (as they reported) ‘‘the possibility to interact with the environment by

myself.’’ A schematic evaluation of the degree of system acceptance revealed

that among the several system outputs, the front door opener was the most

accepted controlled device. Such an application that controls the access to the

domotic environment in the three-room rehabilitation laboratory is illustrated in

the first row of Fig. 3. In particular, the figure shows two sequences of commands

realized through the BCI system. In the first row, with (A) and (B) there is a

sequence in which the BCI system was able to open a door. The red circles of

the first row highlight a person entering through the door that was opened by the

successful modulation of the EEG mu rhythm. The second row shows the



FIG. 3. Two sequences of commands realized through the BCI systems at the Fondazione Santa

Lucia in Rome. In the first row, with (A) and (B) there is a sequence with the BCI system that opens a

door. In the red circles of the first row a person enters through a door that was opened with the use of

the BCI based on the EEGmu rhythm. The second row (C and D) shows the closure of a light with the

use of the same BCI system. The BCI system is controlled with the cursor at the right of the screen.
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switching-oV of a light with the use of the same BCI system. The feedback from

the BCI system is displayed on the screen with the cursor positioned at the lower

right of the screen.
IV. Discussion
The data reported here suggest that it is possible to retrieve the cortical

activity related to mental imagery by using sophisticated high-resolution EEG

techniques, obtained by solving the inverse linear problem with the use of realistic

head models. Of course, the analysis of the distribution of the potential fields

associated with the motor imagery in humans has already been described

(Babiloni et al., 2001; Cincotti et al., 2002; Wolpaw et al., 2002). In the context of

the brain–computer interface, however, it assumes importance if the activity

related to the imagination of arm movement could be better detected by the use

of such high-resolution EEG techniques than that of unprocessed EEG. It is worth

noting that the cortical estimation methodology illustrated above is suitable for
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the online applications needed for the BCI device. In fact, despite the use of

sophisticated realistic head models for scalp, skull, dura mater, and cortical

surface, the estimation of the instantaneous cortical distribution from the acquired

potential measures required a limited amount of time for a matrix multiplication.

Such multiplication occurs between the vector data gathered and the pseudoin-

verse matrix, which is stored oV-line before the start of the EEG acquisition

process. In the pseudoinverse matrix is enclosed the complexity of the geometrical

head modeled with the boundary element or with the finite element modeling

technique, as well as the a priori constraints used for the minimum norm

solutions.

The described methodologies were applied in the context of the neuroreh-

abilitation of a group of six patients aVected by Duchenne muscular dystrophy.

Four out of six were also able to control with the BCI system several electronic

devices disposed in the three-room facility we described previously. The devices

guided by them with an average percentage score of 63% are (i) a simple TV

remote commander, with the capabilities to switch the device on and oV as well as

the capability to change a TV channel, (ii) the switching of the light in a room on

and oV, and (iii) the switching on and oV of a mechanical engine for opening a

door of the room. These devices can, of course, also be controlled by diVerent
inputs signals that eventually use a residual degree of muscular control of patients.

This experiment was reported here because it demonstrates the potential for the

patient to accept and adapt themselves to the use of the new technology for the

control of their domestic environment.

There is a large trend in the modern neuroscience field to move toward

invasive electrode implants to record cortical activity in both animals and humans

for the realization of an eYcient BCI device (Donoghue, 2002; Kennedy et al.,

2000; Taylor et al., 2002). In this chapter, we have presented evidence to suggest

an alternative methodology for the estimation of such cortical activity in a

noninvasive way, by using the possibilities oVered by an accurate modeling of

the principal head structures involved in the transmission of the cortical potential

from the brain surface to the scalp electrodes.
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