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Dynamical Systems and Stability of Equilibrium Points

Dynamical systems in continuous time are described by systems of Ordinary Differential
Equations (ODEs), in n real dependent variables (xk(t), k = 1, 2, . . . , n, which constitute a
state ~x(t) = (x1(t), . . . , xn(t)) in the phase space of the system D ⊆ R

n and are functions
of the single independent variable of the problem: the time t ∈ R. Their dynamics is
described by the system of first order ODEs

dxk

dt
= fk(x1, x2, . . . , xn), k = 1, 2, . . . , n (1)

Since the fk do not explicitly depend on t the system is called autonomous. The functions fk
are defined everywhere in D and are assumed analytic in all their variables, meaning that
they can be expressed as convergent series expansions in the xk (with non-zero radius of
convergence) near one of their equilibrium (or fixed) points, located at the origin of phase
space ~0 = (0, . . . , 0) ∈ D, where

fk(~0) = 0, k = 1, 2, . . . , n. (2)
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What can we say now about the solutions of these equations in a small neighborhood of the
equilibrium point (2), where the series expansions of the fk converge? Is the motion “regular”
or “predictable” there? This is the question of stability of motion first studied systematically
by the great Russian mathematician A. M. Lyapunov, more than 110 years ago.

The first and simplest notion of stability is called asymptotic stability and refers to the case
where all solutions xk(t) of (1), starting near the origin, tend to 0 as t → ∞. A less
restrictive situation arises when we can prove that for every 0 < ε < ε0, no matter how small,
all solutions starting at t = t0 within a neighborhood of the origin K(ε) j B(ε), where B(ε)

is a “ball” of radius ε around the origin, remain inside B(ε) for all t ≥ t0.

This so-called neutral or conditional stability will be of great importance to us, as it frequently
occurs in conservative dynamical systems, among which are the Hamiltonian systems.
These conserve phase space volume and hence cannot come to a complete rest at any
value of t, finite or infinite. As we shall discuss later, conditional stability characterizes
precisely the systems for which Lyapunov could prove the existence of families of periodic
solutions around the origin.
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To discuss the question of stability of the motion near an equilibrium point, we need to know
something about the behavior of the solutions of the linearized equations about that point.
Thus one might try to compare these solutions to an exponential function of time, with the
purpose of identifying a particular exponent, which we call today the Lyapunov characteristic
exponent (LCE).

Let us identify the meaning of these exponents for our problem. Indeed, they are directly
related to the eigenvalues of the n× n matrix J = (pjk), j, k = 1, 2, . . . , n, obtained as the
roots of the characteristic equation

det(J − λIn) = 0, (3)

λ1, λ2, . . . , λn, In being the n× n identity matrix.

In modern terminology, therefore, consider a dynamical system (1), with an equilibrium point
at (0, 0, . . . , 0) and a constant Jacobian matrix

Jk,j = pkj =
∂fk

∂xj
(0, . . . , 0)/ j, k = 1, 2, . . . , n, (4)
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The above analysis translates to the following well-known result:

Theorem (see p. 181 Hirsch and Smale, 1974) If all eigenvalues of the matrix J have
negative real part less than −c, c > 0, there is a compact neighborhood U of the origin,
such that, for all (x1(0), x2(0), . . . , xn(0)) ∈ U , all solutions xk(t) → 0, as t → ∞.
Furthermore, one can show that this approach to the fixed point is exponential: Indeed, if we
denote by | · | the Euclidean norm in R

n and define ~x(t) = (x1(t), x2(t), . . . , xn(t)), it can
be proved that for all ~x(0) in U , |~x(t)| ≤ |~x(0)|e−ct , and |~x(t)| is in U for all t ≥ 0.

Lyapunov paid particular attention to the case where one (or more) of the eigenvalues of the
linearized equations have zero real part. This was the beginning of what we now call
bifurcation theory, as it constitutes the turning point between stability of the fixed point (all
eigenvalues have negative real part) and instability, where at least one eigenvalue has
positive real part.

This theory can be found, not only in Lyapunov’s treatise “Stability of Motion” but also in a
many textbooks on the qualitative theory of ODEs (Hirsch, Smale and Devaney, 2004, Perko,
1995 and Wiggins, 1990). One more result of Lyapunov’s theory, concerning simple periodic
solutions of Hamiltonian systems, will be described in the next section.
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Hamiltonian Systems of N=1 and 2 Degrees of Freedom

Let us now apply the above theory to the case of Hamiltonian dynamical systems of N
degrees of freedom (dof), where n = 2N and the equations of motion are

dqk
dt

=
∂H

∂pk
,

dpk
dt

= − ∂H

∂qk
, k = 1, 2, . . . , N, (5)

where qk(t), pk(t), k = 1, 2, . . . , 2N are the position and momentum coordinates and H is
the Hamiltonian. If H does not explicitly depend on t, it is a first integral (or constant of the
motion), whose value equals the total energy of the system E.
We now assume that our Hamiltonian can be expanded in power series as a sum of
homogeneous polynomials Hm of degree m ≥ 2

H = H2(q1, . . . , qN , p1, . . . , pN ) +H3(q1, . . . , qN , p1, . . . , pN ) + . . . = E, (6)

so that the origin is always an equilibrium point of the system. H(qk(t), pk(t)) = E thus
defines the so-called constant energy surface, on which our Hamiltonian dynamics evolves.

If the linear equations resulting from (5) and (6), with Hm = 0 for all m > 2, yield a matrix,

whose eigenvalues all occur in conjugate imaginary pairs, ±iωk, these provide the

frequencies of the normal mode oscillations of the linearized system.

COMPLEX HAMILTONIAN DYNAMICS – p. 7/41



We can then change to normal mode coordinates and write our Hamiltonian in the form of N
uncoupled harmonic oscillators

H(2) =
ω1

2
(x1

2 + y1
2) +

ω2

2
(x2

2 + y22) + . . .+
ωN

2
(x2

N + y2N ) = E, (7)

where xk, yk, k = 1, 2, . . . , N are the new position and momentum coordinates and ωk

represent the normal mode frequencies of the system.

Theorem (Lyapunov) If none of the ratios of these eigenvalues, ωj/ωk , is an integer, for
any j, k = 1, 2, . . . , N , j 6= k, the linear normal modes continue to exist as periodic solutions
of the nonlinear system (5) when higher order terms H3, H4, . . . etc. are taken into account
in (6).
These solutions have frequencies close to those of the linear modes and are examples of
what we call simple periodic orbits (SPOs), where all variables oscillate with the same
frequency ωk = 2π/Tk , returning to the same values after a single maximum (and
minimum).
These are also called nonlinear normal modes, or NNMs. As we vary the total energy E in
(6) their stability under small perturbations of their initial conditions changes and although a
local property, is often relevant for the more global stability properties of the system!
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The case ofN = 1 degree of freedom

One of the first physical systems that we encounters in our studies is the harmonic oscillator
shown in Fig. 9 described by Newton’s second order differential equation

m
d2q

dt2
= −kq, (8)

where k > 0 is a constant representing the hardness (or softness) of the spring. Equation (8)
can be easily solved to yield the displacement q(t) as an oscillatory function of time of the
form

q(t) = A sin(ωt+ α), ω =
√

k/m, (9)

where A and α are free constants corresponding to the amplitude and phase of oscillations
and ω is the frequency.
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If we now recall that p = mdq/dt represents the momentum of the mass m, we rewrite (8) in
the form of two first order ODEs

dq

dt
=

p

m
=

∂H

∂p
,

dp

dt
= −kq = −∂H

∂q
, (10)

derived from the N = 1 dof Hamiltonian function

H(q, p) =
p2

2m
+ k

q2

2
= E, (11)

which represents the total (kinetic plus potential) energy. If we plot the solutions as orbits in
the (q, p) phase space we obtain the curves shown below, where q(t) and p(t) oscillate
periodically with the same frequency ω.
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A nonlinear system of N=1 degrees of freedom

A more interesting one dof Hamiltonian system representing the motion of a simple
pendulum shown in Fig. 11. Its equation of motion is

ml2
d2θ

dt2
= −mlg sin θ, (12)

If we now write this equation as a system of two first order ODEs, we find again that they can
be cast in Hamiltonian form

dq

dt
= p =

∂H

∂p
,

dp

dt
= − g

l
sin q = −∂H

∂q
, (13)

where q = θ.
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In this case, the energy integral is

H(q, p) =
p2

2
+

g

l
(1− cos q) = E. (14)

Plotting this family of curves in the (q, p) phase space for different values of E we now obtain
a much more interesting picture than Fig. 10 depicted in Fig. 12 below. Observe that, besides
the elliptic fixed point at the origin, there are two new equilibria located at the points (±π, 0).
These points A and B are called saddle points and are unstable in contrast to the (0, 0) fixed
point, which is stable characterized by what we called conditional (or neutral) stability.
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The case of N=2 degrees of freedom: Integrability and chaos

Let us extend our study to Hamiltonian systems of two dof, joining at first two harmonic
oscillators, as shown in Fig. 13. We shall assume that our oscillators have equal masses
m1 = m2 = m and spring constants k1 = k2 = k and impose fixed boundary conditions to
their endpoints.

Newton’s equations of motion give in this case:

m
d2q1

dt2
= −kq1 − k(q1 − q2), m

d2q2

dt2
= −kq2 + k(q1 − q2), (15)

where qi(t) are the particles’ displacements from their equilibrium positions at qi = 0,
i = 1, 2. If we also introduce the momenta pi(t) of the two particles in terms of their
velocities, we obtain the Hamiltonian function

H(q1, p1, q2, p2) =
p21
2m

+
p22
2m

+ k
q21
2

+ k
q22
2

+ k
(q1 − q2)2

2
= E (16)
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If we now change variables

Q1 =
q1 + q2√

2
, Q2 =

q1 − q2√
2

, P1 =
p1 + p2√

2
, P2 =

p1 − p2√
2

(17)

we see that, adding and subtracting by sides the two equations in (15) (dividing also by m

and introducing ω =
√

k/m), splits the problem into two uncoupled harmonic oscillators

dQi

dt
=

Pi

m
,

dPi

dt
= −ω2

i Qi, i = 1, 2, ω1 = ω, ω2 =
√
3ω, (18)

with frequencies ω1, ω2. The new Hamiltonian of the system

K(Q1, P1, Q2, P2) =
P 2
1

2m
+

P 2
2

2m
+ k

Q2
1

2
+ 3k

Q2
2

2
= E. (19)

is expressed as the sum of the Hamiltonians of these oscillators. Thus, changing variables
we have performed a canonical coordinate transformation and realize that our system
possesses two integrals of the motion

Fi(Q1, P1, Q2, P2)) =
P 2
i

2m
+ ki

Q2
i

2
= Ei, i = 1, 2, (20)
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with k1 = k, k2 = 3k, while Ei are two free parameters of the system to be fixed by the initial
conditions qi(0), pi(0), i = 1, 2.
The solutions of this system are, in general, linear combinations of trigonometric functions
with frequencies ω1 =

√
k, ω2 =

√
3k. If these were rationally dependent, i.e. if their ratio

were a rational number ω1/ω2 = m1/m2 (m1,m2 all orbits close on 2-dimensional invariant
tori and the motion would be periodic. In our example, this could only happen for initial
conditions such that E1 or E2 is zero.
For E1 and E2 both non-zero the oscillations are quasiperiodic, as they are the
superposition of trigonometric terms whose frequencies are rationally independent, since the
ratio ω2/ω1 =

√
3 is irrational. Hence, the orbits in the 4-dimensional phase space are never

closed, i.e. they never pass by the same point and eventually cover uniformly a
2-dimensional torus specified by the values of E1 and E2.
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A nonlinear system of N=2 degrees of freedom

We now turn to a system of two coupled nonlinear oscillators connected with the famous
Hénon and Heiles Hamiltonian

H =
1

2
(p21 + p22) +

1

2
(ω2

1q
2
1 + ω2

2q
2
2) + q21q2 − C

3
q32 . (21)

describing the motion of a star of mass m in the axisymmetric potential of a galaxy.
Introducing the more convenient variables q1 = x, q2 = y, p1 = px, p2 = py , we rewrite the
above Hamiltonian in the form

H =
1

2
(p2x + p2y) + V (x, y) =

1

2
(p2x + p2y) +

1

2
(Ax2 + By2) + x2y − C

3
y3 = E, (22)

where E is the total energy and we have set ω2
1 = A > 0 and ω2

2 = B > 0. Newton’s
equations of motion associated with this system are

d2x

dt2
= −∂V

∂x
= −Ax− 2xy,

d2y

dt2
= −∂V

∂y
= −By − x2 + Cy2. (23)
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Note that (22) represents a first integral of this system. If we could also find a second one,
the problem would be completely integrable and could be integrated by quadratures. This,
however, is highly unlikely in general!
The surprising result is there are only 3 known cases in which a second integral exists,
allowing one to solve the Hénon-Heiles equations completely:

Case 1 : A = B, C = −1,

Case 2 : A,B free, C = −6,

Case 3 : B = 16A, C = −16. (24)

In these cases, most orbits (in phase space domains of bounded motion) would be
quasiperiodic and lie on 2-dimensional tori rendering the dynamics perfectly regular and
predictable. For all other parameter values, one finds (besides periodic and quasiperiodic
orbits), a new kind of solution that appears “irregular” and “unpredictable”, which we call
chaotic. These solutions tend to occupy densely 3-dimensional regions in the 4-dimensional
phase space and depend very sensitively on initial conditions, in the sense that almost all
other orbits in their vicinity deviate exponentially from the chaotic orbit as time increases.
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Figure 1: On the Poincare Surface of Section (y, py) for (a) E = 1/24 and (b) E = 1/12, no
chaotic orbits are visible. At (c) E = 1/8, we observe islands of order surrounded by chaos.
In (d), where E = 1/6, chaotic motion extends over most of phase space.
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Stability Analysis of Periodic Orbits

To discuss the stability of periodic orbits, we need two fundamental concepts: The first is
more analytical and is provided by Floquet theory and the second is more numerical and
refers to the so-called Poincaré map and its associated surfaces of section (PSS).
In particular, we will assume that our n-dimensional dynamical system, cast in the general
form ~̇x = ~f(~x) (see (1)) has a periodic solution ~̂x(t) = ~̂x(t+ T ) of period T . Let us choose
an arbitrary point along this orbit ~̂x(t0) and define a PSS at that point as follows

Σt0 =
{

~x(t) / (~x(t)− ~̂x(t0)) · ~f(~̂x(t0)) = 0
}

. (25)

Thus, Σt0 is a (n− 1)-dimensional plane which intersects the given periodic orbit at ~̂x(t0)
and is vertical to the direction of the flow at that point. Clearly now a Poincaré map can be
defined on that plane as before, by

P : Σt0 → Σt0 , ~xk+1 = P~xk, k = 0, 1, 2, . . . (26)

for which ~x0 = ~̂x(t0) is a fixed point, since ~x0 = P~x0.
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We now examine small deviations about this point,

~xk = ~̂x0 + ~ηk, ||~ηk|| ≪ ε, (27)

(where ε is of the same magnitude as ||~̂x0||), substitute (27) in (26) and linearize the
Poincaré map to obtain

~ηk+1 = DP (~̂x0)~ηk, (28)

where we have neglected higher order terms in ~η and DP (~̂x0) denotes the Jacobian of P
evaluated at ~̂x0.
To determine P we may use the variational equations of the original differential equations
derived by writing ~x(t) = ~̂x(t) + ~ξ(t), whence linearizing (1) about this periodic orbit leads to
the system

~̇ξ(t) = A(t)~ξ(t), A(t) = A(t+ T ), (29)

where A(t) is the Jacobian matrix of ~f(~x) evaluated at the periodic orbit ~x(t) = ~̂x. The
crucial question, of course, we must face now is: How are the two linear systems (28) and
(29) related to each other?
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Observe that we have used different notations for the small deviations about the periodic
orbit: ~ξ(t) in the continuous time setting of differential equations and ~ηk in the discrete time
setting of the Poincaré map. This is to emphasize that their dimensionality as vectors in the
n-dimensional phase space R

n (n = 2N for a Hamiltonian system) is different: ~ξ(t) is
n-dimensional, while ~ηk is (n− 1)-dimensional! How are we to match these two small
deviation variables?

The answer will come from what is called Floquet theory (see Perko, 1995,Wiggins, 1990).
First we realize that since (29) is a linear system of ODEs it must possess, in general, n
linearly independent solutions, forming the columns of the n× n fundamental solution matrix
M(t, t0) in

~ξ(t) = M(t, t0)~ξ(0), M(t, t0) = M(t+ T, t0) (30)

Now, if we change our basis at the point ~̂x(t0) so that one of the directions of motion is along
the direction vertical to the PSS (25), we will observe that the nth column of the matrix
M(T, t0) has zero elements except at the last entry which is 1. Thus, if we eliminate from
this matrix its nth row and nth column, it turns out that its (n− 1)× (n− 1) submatrix is
none other than our beloved Poincaré map (26)!
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This means that if we could compute the so-called monodromy matrix M(T, t0) numerically
we could evaluate its eigenvalues, µ1, . . . , µn−1 (the last one being µn = 1), which are
those of the Poincaré map and determine the stability of our periodic orbit as follows: If they
are all on the unit circle, i.e. |µi| = 1, i = 1, . . . , n− 1, the periodic orbit is (linearly) stable,
while if (at least) one of them satisfies |µj | > 1 the periodic solution is unstable.

But how do we compute the monodromy matrix M(T, t0)? It is not so difficult. Let us first set
t0 = 0 for convenience and observe from (30) that M(0, 0) = In. All we have to do is
integrate numerically the variational equations (30) from t = 0 to t = T , n times, each time
for a different initial vector (0, . . . , 0, 1, 0, . . . , 0) with 1 placed in the ith position,
i = 1, 2, . . . , n.

Note that since these equations are linear numerical integration can be performed to
arbitrary accuracy and is also not too-time consuming for reasonable values of the period T .
Once we have calculated M(T, 0), we may proceed to compute its eigenvalues and
determine the stability of the periodic orbit according to whether at least one of these
eigenvalues has magnitude greater than 1.
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Local Dynamics ofN–Degree– of–Freedom Hamiltonians

The Fermi–Pasta–Ulam (FPU)- β model

The FPU -β one-dimensional lattice is described by the Hamiltonian

H =
1

2

N
∑

j=1

ẋ2
j +

N
∑

j=0

(

1

2
(xj+1 − xj)

2 +
1

4
β(xj+1 − xj)

4

)

= E (31)

Let us focus on Simple Periodic Orbits (SPOs), where all variables oscillate in or out of
phase and return to their initial state after only one maximum and one minimum in their
oscillation. The SPOs we consider here are:

I. The FPU π-mode under periodic boundary conditions :

xN+k(t) = xk(t), ∀t, k (32)

where the particles execute out-of-phase motion (OPM) with N even

x̂j(t) = −x̂j+1(t) ≡ x̂(t), j = 1, . . . , N. (33)

COMPLEX HAMILTONIAN DYNAMICS – p. 23/41



II. For the FPU model and fixed boundary conditions :

x0(t) = xN+1(t) = 0, ∀t (34)

(a) The SPO1 mode , with N odd,

x̂2j(t) = 0, x̂2j−1(t) = −x̂2j+1(t) ≡ x̂(t), j = 1, . . . ,
N − 1

2
. (35)

(b) The SPO2 mode , with N = 5 + 3m, m = 0, 1, 2, . . . particles,

x3j(t) = 0, j = 1, 2, 3 . . . ,
N − 2

3
, (36)

xj(t) = −xj+1(t) = x̂(t), j = 1, 4, 7, . . . , N − 1. (37)

Let us see some of these solutions graphically in the figure of the next page:
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An application of Floquet stability analysis

Stability analysis of SPOs is performed by studying the eigenvalues of the monodromy
matrix. To see how this is done consider the SPO1 mode of FPU, for which the equations of
motion collapse to a single second order ODE:

¨̂x(t) = −2x̂(t)− 2βx̂3(t) (38)

Its solution is well–known in terms of Jacobi elliptic functions

x̂(t) = C cn(λt, κ2) (39)

with modulus κ2. Linearizing about this solution xj = x̂j + yj , by keeping up to linear terms
in yj , we get the variational equations

ÿj = (1 + 3βx̂2)(yj−1 − 2yj + yj+1), j = 1, . . . , N (40)

These separate into N uncoupled Lamé equations

z̈j(t) + 4(1 + 3βx̂2)sin2
(

πj

2(N + 1)

)

zj(t) = 0, j = 1, . . . , N (41)
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where the zj variations are simple linear combinations of the yj ’s.

Changing variables to u = λt, the above equation takes the form

z′′j (u) + 2
(

1 + 4κ2 − 6κ2sn2(u, κ2)
)

sin2
(

πj

2(N + 1)

)

zj(u) = 0, j = 1, . . . , N (42)

where primes denote differentiation with respect to u. According to Floquet theory, its
solution is bounded (or unbounded) depending on whether the eigenvalues of the
monodromy matrix are on or off the unit circle .

These periodic solutions all experience a first destabilization at energy densities:

Ec

N
∝ N−α, α = 1, or, 2, N → ∞. (43)

More specifically, the first variation zj(u) to become unbounded as κ2 (or, the energy E)
increases is j = N−1

2
and the energy values Ec/N ∝ 1/N at which this happens are

plotted below.
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Figure 2: Ec

N
of the first destabilization of the SPO1 solution of the FPU system (the

k = (N + 1)/2 mode ) obtained by the monodromy eigenvalues. The dashed line is the
function ∝ 1

N
.

The OPMs of the FPU and BEC Hamiltonians become unstable, as the eigenvalues of their
monodromy matrix exit the unit circle on the real axis: For FPU at -1 (period–doubling
bifurcation) and for BEC at +1 (pitchfork bifurcation). Remarkably enough, the IPM of the
BEC Hamiltonian does not destabilize , no matter what N or E we tried.
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An Analytical Criterion for “Weak” Chaos

It was shown very recently by Flach et al. (2005) that the linear modes of the FPU β – model
can be continued as SPOs of the corresponding lattice. In fact, the energy threshold for the
destabilization of the low k - modes (k = 1, 2, 3, ..) coincides with the “weak” chaos
threshold shown by de Luca and Lichtenberg (1995) to be associated with the breakup of
the famous FPU recurrences . By k–modes, we refer here to the linear normal modes of the
FPU lattice

Qk =

√

2

N + 1

N
∑

i=1

qi sin
kiπ

N + 1
, Pk = Q̇k (44)

with energies and frequencies

Ek =
1

2

[

P 2
k + ωk

2Q2
k

]

, ωk = 2 sin
kπ

2(N + 1)
(45)

Using linear stability analysis, Flach et al. (2005) report an approximate formula for the
destabilization energy of the low k = 1, 2, 3, .. modes given by

Ec ≈ π2

6β(N + 1)
. (46)
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We have discovered that this energy threshold also coincides with the instability threshold
of our SPO2 mode! In Figure 3 we compare formula (22) (dashed line) with the
destabilization threshold for our SPO2 and find excellent agreement.
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Figure 3: The solid curve is the energy Ec/N of the first destabilization of the SPO2 (the
k = 2(N + 1)/3 mode ) for β = 0.0315 obtained from the eigenvalues of the monodromy
matrix and the dashed line is the approximate formula.
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Spectrum of Lyapunov Exponents and “Strong” Chaos

Convergence of Lyapunov Spectra

We now evaluate, in the neighborhood of our SPOs the Lyapunov spectra :

Li, i = 1, . . . , 2N, L1 ≡ Lmax > L2 > . . . > L2N . (47)

If the largest one, L1 ≡ Lmax > 0, the orbit is chaotic. In particular, we compute in the limit
t → ∞ the quantities

Ki
t =

1

t
ln

‖ ~wi(t) ‖
‖ ~wi(0) ‖

, (48)

where ~wi(0) and ~wi(t), i = 1, . . . , 2N are deviation vectors from the given orbit ~x(t). After
every Tj , following the Bennetin et al.(1980) algorithm, we ortho–normalize the vectors ~wi(t)

and obtain finally Li by

Li = lim
t→∞

1

n

n
∑

j=1

Ki
Tj

, n → ∞. (49)
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Observe that in the figure below we have plotted the Lyapunov spectrum of both the OPM
and the SPO1 mode of the FPU Hamiltonian for N = 16 and periodic boundary
conditions at the energy E = 6.82 where both of them are unstable. We see that the two
Lyapunov spectra are very close to each other suggesting that the chaotic regions are
“connected".
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Figure 5: Lyapunov spectra of the OPM and the SPO1 modes of FPU, for N = 16 and

periodic boundary conditions practically coincide at E = 6.82 where both are unstable.
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More systematically, let us plot the Lyapunov spectra near the SPO1 and SPO2 modes, of
the FPU system, for N = 11, fixed boundary conditions and energy values E1 = 1.94 and
E2 = 0.155 respectively, where the SPOs have just destabilized.
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Figure 6: Lyapunov spectra near SPO1 and SPO2 for N = 11 at energies E = 1.94 and

E = 0.155, where they have just destabilized. (b) Same as (a) at energy E = 2.1. (c)

Convergence of the Lyapunov spectra near the two SPOs at energy E = 2.62. (d)

Coincidence of Lyapunov spectra continues at higher energy E = 4.
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Figure 7: The “figure eight” chaotic region for initial conditions in the immediate vicinity of
SPO1 (≃ 10−5), a vague resemblance to “figure eight” for initial conditions a little further
away (≃ 10−1) and a large scale chaotic region in the energy surface for initial conditions
more distant (≃ 1) for N = 5 particles, when it is unstable, on the Poincaré surface of section
(x1, ẋ1) taken at times when x3 = 0. In this picture we integrated our orbits up to tn = 105 in
the energy surface E = 7.4.
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Lyapunov Spectra and K-S Entropy

Thus, raising the energy, we observe that at E = 2.62, the two spectra have nearly
converged to the same exponentially decreasing function,

Li(N) ∝ e−α i
N , i = 1, 2, . . . ,K(N) (50)

at least up to K(N) ≈ 3N
4

. The α exponents for the SPO1 and SPO2 are found to be
approximately 2.3 and 2.32 respectively. The figure also shows that this coincidence of
Lyapunov spectra persists at higher energies.

Lyapunov Spectra and the Thermodynamic Limit

We can now determine statistical properties of the dynamics in the so–called thermodynamic

limit of E and N growing indefinitely, for E/N constant. First, we compute the Lyapunov

spectra of the FPU and BEC systems near unstable OPM solutions, which are well

approximated by Li ∝ e−αi/N .
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Figure 8: Positive Lyapunov exponents spectrum of the OPM of the FPU Hamiltonian for
E/N = 3/4. (b) Positive Lyapunov exponents spectrum of the OPM of the BEC Hamiltonian
for E/N = 3/2.
Specifically, we compute the Kolmogorov–Sinai entropy hKS(N) (solid curves), defined by,

hKS(N) =

N−1
∑

i=1

Li(N), Li(N) > 0. (51)
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Thus, we find, for both Hamiltonians, that hKS(N) is an extensive thermodynamic
quantity as it is clearly seen to grow linearly with N , i.e.,

hKS(N) = Lmax
exp−α/N

1− exp−α/N
≈ Lmax

N

α
∝ N (52)

hence the FPU and BEC Hamiltonians behave as ergodic systems of statistical mechanics.
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Figure 9: (a) The hKS(N) entropy of the FPU Hamiltonian for fixed E/N = 3/4. (b) and of

the BEC Hamiltonian for E/N = 3/2 (solid curve).
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Conclusions

1) We studied local and global dynamics of N dof Hamiltonian systems, focusing on simple
periodic orbits (SPOs) and showed that their first destabilization typically decays as

Ec/N ∝ N−α, α = 1, or, 2. (53)

2) We showed in the FPU β− model that a relatively high k = 2(N + 1)/3 mode of the linear
lattice, is as important for the global dynamics as the low modes, since its destabilization
threshold,

Ec ≈ π2

6β(N + 1)
. (54)

coincides with the one found by other researchers for the breakdown of FPU recurrences
(“weak" chaos).

3) We calculated the Lyapunov spectra in the vicinity of our SPOs solutions and observed
that, as E increases, they attain same functional form,

Li(N) ∝ e−α i
N , i = 1, 2, . . . ,K(N) (55)

and eventually converge, implying that the corresponding chaotic regions have “merged” and

large scale chaos has spread in the system. COMPLEX HAMILTONIAN DYNAMICS – p. 39/41



4) We thus showed that the associated Kolmogorov–Sinai entropies per particle increase
linearly with N

hKS(N) =

N−1
∑

i=1

Li(N) ∝ N, Li(N) > 0. (56)

in the thermodynamic limit of E → ∞ and N → ∞ and fixed E/N and, therefore, behave as
extensive quantities of statistical mechanics.
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