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Sums of Random Variables and the Central Limit Theorem

The approach we shall follow is in the spirit of the Central Limit Theorem (CLT). In particular,
we focus on chaotic regions of: (a) area–preserving maps







xn+1 = f(xn, yn)

yn+1 = g(xn, yn)
(1)

and (b) N–degree–of–freedom Hamiltonian systems

dqk
dt

=
∂H

∂pk
,

dpk
dt

= − ∂H

∂qk
, k = 1, 2, . . . , N (2)

and construct distributions of rescaled sums of M values of an observable ηi = η(ti),
i = 1, . . . ,M , which is a linear combination of the variables (xn, yn), or (qn(t), pn(t)) of the
problem. These are viewed as independent random variables in the limit of large
M(→ ∞) and we evaluate their sums for a large number Nic of initial conditions:

S
(j)
M =

M
∑

i=1

η
(j)
i , j = 1, . . . , Nic (3)
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We then study the probability density functions (pdfs) of the variables S
(j)
M , centered

about their mean value 〈S(j)
M 〉 and rescaled by their standard deviation σM

s
(j)
M ≡ 1

σM

(

S
(j)
M − 〈S(j)

M 〉
)

=
1

σM

(

M
∑

i=1

η
(j)
i − 1

Nic

Nic
∑

j=1

M
∑

i=1

η
(j)
i

)

(4)

where

σ2
M =

1

Nic

Nic
∑

j=1

(

S
(j)
M − 〈S(j)

M 〉
)2

= 〈S(j)2
M 〉 − 〈S(j)

M 〉2. (5)

If our variables are random , or belong to uniformly ergodic regimes of deterministic
systems , when we plot the normalized distribution of probabilities P (s

(j)
M ) as a function of

s
(j)
M , , we expect to find in the spirit of the classical CLT :

P (s
(j)
M ) = ae−βs

(j)2
M (6)

i.e a Gaussian pdf .
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However, in regimes of “weak chaos” of many conservative systems , these distributions
are well–approximated by different pdfs, the most ubiquitous of them being the q-Gaussian :

P (s
(j)
M ) = ae

−βs
(j)2
M

q ≡ a

(

1− (1− q)βs
(j)2
M

) 1
1−q

(7)

where q is the Tsallis entropy index , β is a free parameter and a a normalization
constant . Expression (7) is a generalization of the Gaussian, since in the limit q → 1 we have

limq→1e
−βx2

q = e−βx2
. If 1 ≤ q < 3, (7) is normalized for an appropriate choice of a(β).

As we shall demonstrate, there are many interesting cases of conservative systems ,
where chaotic orbits are strongly influenced by “stickiness” phenomena and produce
long–lived quasi–stationary states (QSS), whose pdfs are well–approximated by
q–Gaussians. These, however, do not always converge to a q gaussian, but evolve,
through a sequence of QSS , which we seek to identify the limit t → ∞.
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Nonextensive Statistical Mechanics and q-Gaussians

Multi–particle systems belong to different “universality” classes , according to their
thermostatistics. In the most widely studied Boltzmann–Gibbs class , if the system can be
at any one of i = 1, 2, ...,W states with probability pi, its entropy is given by the famous
formula

SBG = −k

W
∑

i=1

pilnpi (8)

where k is Boltzmann’s constant, provided, of course,

W
∑

i=1

pi = 1 (9)

The BG entropy satisfies the property of additivity , i.e. if A and B are two statistically
independent systems, the probability to be in their union is pA+B

i,j = pAi pBj and this
necessitates that the entropy of the joint state obey

SBG(A+B) = SBG(A) + SBG(B) (10)
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At thermal equilibrium , the pi that optimize the BG entropy , subject to ((9)) and a given
energy spectrum Ei and temperature T are:

pi =
e−βEi

ZBG
, ZBG =

W
∑

i=1

e−βEi (11)

where β = 1/kT and ZBG is the so–called partition function. For a continuum set of
states depending on one variable , x, the optimal probability density function (pdf)
corresponding to BG statistics subject to ((9)), zero mean and given variance V is, of course,

the well–known Gaussian p(x) = e−x2/2V /
√
2V .

Another important property of the BG entropy is that it is extensive ,

limN→∞
SBG

N
< ∞ (12)

i.e. it grows linearly as a function of the number of degrees of freedom N of the system. But

then, what about many physically important systems that are not extensive ?
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There are many examples of non–extensive systems , like: self–gravitating systems of
finitely many mass points , interacting black holes, ferromagnetic models, systems with
long range forces , in which strong correlations and power laws are dominant.

In deterministic dynamics, for instance, chaos does not always mean exponential
instability , as there are regimes of “weak chaos” , where “stickiness phenomena” occur on
or near the boundary of regions of regular motion called ‘edge of chaos’ , where
Lyapunov exponents are zero and orbits separate linearly from each other.

It is for these type of situations that Tsallis proposed a different form of entropy [Tsallis,2009]

Sq = k
1−∑W

i=1 p
q
i

q − 1
with

W
∑

i=1

pi = 1 (13)

depending on an index q, where i = 1, . . . ,W counts the microstates of the system

occurring with probability pi and k is the Boltzmann constant.
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Just as the Gaussian distribution represents an extremal of the BG entropy ((8)), so is the
q–Gaussian pdf obtained as a maximum (for q > 0) or a minimum (q<0) of the Tsallis
entropy ((13)).

p(x) = ae−βx2

q ≡ a

(

1− (1− q)βx2

) 1
1−q

(14)

for a continuum set of states.

The Tsallis entropy is not additive , as

Sq(A+B) = Sq(A) + Sq(B) + k(1− q)Sq(A)Sq(B) (15)

and hence is not extensive . It thus offers the possibility of studying cases where the A, B
subsystems mentioned above are strongly correlated.

Systems characterized by these properties are said to have complex statistics , which is
significantly different from BG systems.
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Nonextensive Thermodynamics

If we have a discrete set of states j = 1, 2, ...,W , we define the escort probabilities

Pi =
pqi

∑W
j=1 p

q
j

(16)

Given the constraints (9) and

< Ei >q=
W
∑

j=1

PiEi = Uq (17)

we find that the distribution that extremizes the Tsallis entropy Sq is the q-Gaussian

pi =
e
−βq(Ei−Uq)
q

Z̃q

(18)

where the partition function Z̃q is given by
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Z̃q =

W
∑

i=1

e
−βq(Ei−Uq)
q (19)

and βq is the Lagrange multiplier associated with constraint (12)

βq =
β

∑W
j=1 p

q
j

(20)

From the above one can prove that the fundamental thermodynamical equations have
the same form as the corresponding BG expressions with all va riables indexed by q,
and β = 1/kT :

Sq = klnqZ̃q ,
1

T
=

∂Sq

∂Uq
, Fq = Uq − TSq = − 1

T
lnqZq (21)

and lnZq = lnZ̃q − βUq .
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Pdfs of Chaotic States in Area–Preserving maps

Consider the perturbed MacMillan map, which occurs in the study of equilibrium
configurations of Ablowitz–Ladik Discrete Nonlinear Schrodinger Equations:







xn+1 = yn

yn+1 = −xn + 2µ yn
1+y2

n
+ ǫyn

(22)

with parameters ǫ, µ. Since its Jacobian is 1, (22) is area-preserving.

We have analyzed the histogram of their normalized sums for a range of parameters (ǫ, µ)
and have identified some generic classes of q-Gaussians , exponentials , ∼ e−k|z| or
Gaussians . Monitoring their time evolution for increasing number of iterations N , we
observe the occurrence of different QSS, which we present with the corresponding phase
space plots in the Figures below.

ǫ 0.2 0.5 0.9 1.2 1.6 1.8

Lmax 0.0867 0.082 0.0875 0.0513 0.0495 0.05876

Table 1: Maximal Lyapunov exponents for µ = 0.6 and ǫ = 0.2, 0.5, 0.9, 1.2, 1.6, 1.8.
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Figure 1. Tendency away from a Gaussian: Dynamical and statistical behavior of chaotic
orbits of the MacMillan map for parameter values µ = 1.6, and ǫ = 0.2. Left: The pdfs of the
normalized sums of iterates. Right: The corresponding phase space plot. N is the number of
iterates and Nic is the number of initial conditions randomly chosen from a square
(0, 10−6)× (0, 10−6).

COMPLEX HAMILTONIAN DYNAMICS – p. 15/63



-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

1E-4

1E-3

0,01

0,1

1

=0.9
=1.6

 N=218;Nic=105

 N=221;Nic=106

 N=223;Nic=106

 N=225;Nic=105

P
(y
/
)

y/

Figure 2. Tendency towards a Gaussian: Dynamical and statistical behavior of chaotic
orbits of the MacMillan map for parameter values µ = 1.6, and ǫ = 0.9. Left: The pdfs of the
normalized sums of iterates. Right: The corresponding phase space plot. N represents the
number of (summed) iterates and Nic is the number of initial conditions randomly chosen
from a square (0, 10−6)× (0, 10−6).
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A. The ǫ = 0.9, (µ = 1.6) case: Towards a Gaussian

The ǫ = 0.9 case is a typical example producing time–evolving pdfs. Figures 1 shows that
the corresponding phase space plots yield a simple chaotic region in phase space around
two islands, yet the corresponding pdfs do not converge to a single distribution, rather they
pass from q-Gaussians to triangular to Gaussian distributions.

There exist at least three long–lived QSS whose iterates generate pdfs passing through
different shapes. Consequently, for i = 1 . . . N = 216, a QSS is produced whose pdf is a
(q = 1.6)–Gaussian whose β increases with increasing N . This is most likely due to a
“stickiness” effect around islands of regular motion.

Figures 3 and 4 below show phase space plots for a number of iterates N . Note that for
N = 1 . . . 216, a ‘figure eight’ chaotic region is formed around two islands. But for N > 216,
a more complex structure emerges, as iterates stick around new islands, and phase space
statistics passes through a sequence of quasi-stationary s tates.
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Figure 3. ǫ = 0.9, µ = 1.6 MacMillan map phase space plots (first panel) and the
corresponding PDFs (second panel) of the re-normalized sums as the number of iterates
i = 1 . . . N,N ≤ 1016 increases, starting from a randomly chosen initial condition in a
square (0, 10−6)× (0, 10−6).
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Figure 4. ǫ = 0.9, µ = 1.6 MacMillan map phase space for i = 1 . . . N,N ≥ 223 plot
iterates, starting from a randomly chosen initial condition in a square (0, 10−6)× (0, 10−6)

and the corresponding pdfs (right panel).

COMPLEX HAMILTONIAN DYNAMICS – p. 19/63



Thus, more than one QSS coexist whose pdfs form a sequence of different
(q 6= 1)–Gaussians. As we see in Figure 3 that this sequence of QSS for N ≤ 221 produces
a distribution where central part is still well–described by a (q = 1.6)–Gaussian .

However, as we continue to iterate the map to N = 223, this (q = 1.6)–Gaussian passes
through a superposition of states characterized by triangular distributions . From here on,
as N > 223, the central part of the pdfs become q–Gaussians with q → 1 (see Figure 4) and
a true Gaussian is expected in the limit (N → ∞).

B. The ǫ = 1.2, (µ = 1.6) cases: Towards a q Gaussian

Let us now analyze the cases ǫ = 1.2, whose maximum Lyapunov exponent is Lmax ≈ 0.05.
In Figure 5 iterates show a diffusive behavior that spreads around islands of a higher order
resonance, as iterations reach N = 219.

The central part of the pdfs converges to a (q = 1.6)–Gaussian for N ≤ 216 (left panel of
Fig. 5). Then, orbits diffuse outward and even the tail of the pdf converges to a
(q = 1.6)-Gaussian (right panel of Fig. 5). For larger N , diffusion ceases at the q–Gaussian
of Figure 6.
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Figure 5. Dynamical and statistical behavior of chaotic orbits of the MacMillan map for
µ = 1.6, and ǫ = 1.2. On the right the phase space plot and on the left the pdfs of the
normalized sums of iterates.
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Figure 6. Tail convergence of the q–Gaussian for µ = 1.6, and ǫ = 1.2 depicting the pdfs for
N > 218 numbers of iterates.
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Figure 7. Similar dynamical and statistical behavior of chaotic orbits of the MacMillan map is
observed for µ = 1.6, ǫ = 1.6, as in the ǫ = 1.2 case. Orbital diffusion to an outer chain of
islands generates pdfs of iterate sums that also converge to a true q–Gaussian as N

increases to larger and larger values.
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Quasi–stationary Chaotic States in Fermi–Pasta–Ulam Hamiltonians

The FPU β− model is a one–dimensional lattice of nonlinear oscillators described by the
Hamiltonian

H =
1

2

N
∑

j=1

p2j +
N
∑

j=0

(

1

2
(qj+1 − qj)

2 +
1

4
β(qj+1 − qj)

4

)

= E (23)

E being its total energy. We shall impose fixed boundary conditions (fbc) :
q0(t) = qN+1(t) = 0, or periodic boundary conditions (pbc)
qj(t) = qj+N (t), pj(t) = pj+N (t), for all t > 0.

We focus on Simple Periodic Orbits (SPOs) , where all variables oscillate in or out of phase
and return to their initial state after only one maximum and one minimum in their oscillation.
Examples of such SPOs are Nonlinear Normal Modes (NNMs) , i.e. continuations of linear
normal modes of the FPU chain described by the Qq and Pq variables:

Qq =

√

2

N + 1

N
∑

i=1

qi sin
qiπ

N + 1
, Pq = Q̇q (24)
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These solutions are:
(a) The FPU π–Mode under pbc with N even

q̂j(t) = −q̂j+1(t) ≡ q(t), j = 1, . . . , N (25)

(b) The SPO1 mode under fbc , with N odd,

q̂2j(t) = 0, q̂2j−1(t) = −q̂2j+1(t) ≡ q̂(t), j = 1, . . . ,
N − 1

2
. (26)

(c) The SPO2 mode under fbc , with N = 5 + 3m, m = 0, 1, 2, . . .

q̂3j(t) = 0, j = 1, 2, 3 . . . ,
N − 2

3
, (27)

q̂j(t) = −q̂j+1(t) = q̂(t), j = 1, 4, 7, . . . , N − 1. (28)

which are exact continuations of the q = N/2, q = (N + 1)/2 and q = 2(N + 1)/3 linear
modes respectively. Let us see what these solutions look like for some small particle chains.
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Figure 8: The π–mode of oppositely moving particles, the SPO1 mode corresponding to
every other particle being stationary and the SPO2 mode, with one stationary particle every
other two.
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Our aim is to study chaotic regions near these NNM orbits, when they have just turned
unstable.

(a) The FPU π–Mode under pbc with N even
Here, we choose as an observable the quantity

η(t) = qN
2
(t) + qN

2
−1

(t) (29)

using the fact that η(t) = 0 at energy values E where the π–mode is still stable. At energies
above its first destabilization threshold, i.e. E > E1

u, η(t) deviates from zero and starts to
explore a thin chaotic layer . We first consider the case of N = 128 and β = 1 for which
E1

u ≈ 0.0257 and take as our total energy E = 0.768, at which the π–mode is unstable.

As we see in Figures 9 and 10, when we increase the total integration time of our numerical
trajectory, the statistical distributions (red curves) approaching closer and closer to a
Gaussian with q tending to 1.
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Figure 9. Plot in linear–log scale of numerical (red curve), q–Gaussian (green curve) and
Gaussian (blue curve) distributions for the FPU π− mode with p.b.c. for N = 128 degrees of
freedom, β = 1 and E = 0.768. Panel a) corresponds to integration time tf = 105 using
Nic = 10 and M = 10 terms in the sums. The numerical fitting with a q–Gaussian gives
q ≈ 1.818 with χ2 ≈ 0.00070. Panel b) corresponds to tf = 106 using Nic = 100 and
M = 100 terms in the sums. Here the fitting is with a q–Gaussian with q ≈ 1.531 and
χ2 ≈ 0.00039.
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Figure 10. Panel c) corresponds to final integration time of tf = 108 using time windows of
length Nic = 1000 and M = 1000 terms in the computations of the sums. Here the
numerical distribution (red curve) has almost converged to a Gaussian (blue curve). Panel d)
Plot in linear–log scale of the same numerical distribution as in panel a) (red curve) and of
the P ′ function of Eq. (30) for a1 ≈ 0.009, aq ≈ 2.849 and q ≈ 2.179 with χ2 ≈ 0.00008

(green curve). The fitting by this function is evidently better than that with a q–Gaussian.
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As Figure 10 (d) shows, the computed distribution (red curve) on its way to a Gaussian, may
pass through intermediate QSS, where it is better fitted by a function presented in [Tsallis
and Tirnakli, 2010]

P ′(s
(j)
M ) =

1
(

1− aq

a1
+

aq

a1
e(q−1)a1s

(j)2
M

) 1
q−1

, a1, aq ≥ 0 and q > 1 (30)

where a1 ≈ 0.009, aq ≈ 2.849 and q ≈ 2.179 getting χ2 ≈ 0.00008 (in contrast to the
χ2 ≈ 0.00070 of a q–Gaussian (14) fitting with q ≈ 1.818). Eq. (30) contains q–Gaussians in
the limit of q being close to 1.

(b) FPU SPO1 mode under fbc
Let us now pass to the second example we consider in this study and examine the chaotic
dynamics near another NNM of the FPU system, imposing this time fixed boundary
conditions . In particular, we study statistical distributions of chaotic orbits in the
neighborhood of a nonlinear mode we have called SPO1.
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More specifically, we consider the FPU–β one–dimensional lattice of N = 5 particles under
fbc.

The chaotic regions near this solution (when it has just become unstable) are embedded into
each other, as shown in Figure 11. At first, a “figure eight” appears created by an orbit
starting at a distance ≈ 1.192× 10−7 from the SPO1 mode, see the surface of section
(q1, p1) of Figure 11 (at times when q3 = 0 and E = 7.4).

Orbits starting in the neighborhood of this point remain nearby for very long times, forming
the “figure eight” at the middle of the picture. Starting, however, at a distance
≈ 1.086× 10−2 from the saddle point, a more extended chaotic region is observed, in the
form of a small “figure eight cloud” enveloping the first orbit.

Choosing even more distant initial conditions, e.g. one starting ≈ 3.421× 10−1 from the
saddle point, a much larger chaotic region is obtained, which spreads uniformly over a
much larger part of the available energy surface.

COMPLEX HAMILTONIAN DYNAMICS – p. 31/63



 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

p 1

q1

Figure 11: (i) The “figure eight” chaotic region (blue points) for an orbit starting at a distance
≈ 1.192× 10−7 from SPO1 mode at the saddle point in the figure), (ii) a fatter “figure eight
cloud” (green points) is seen starting at (≈ 1.086× 10−2) and a much larger chaotic region
(red points) on the energy surface for an initial condition even more distant (≈ 3.421× 10−1).
N = 5 and β = 1, on the surface of section (q1, p1) computed at q3 = 0. In this figure, we
have integrated our three orbits up to tf = 105 on the energy surface E = 7.4.
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In the present example, we have chosen as an observable the quantity

η(t) = q1(t) + q3(t) (31)

which is equal to zero at the SPO1 orbit and becomes nonzero due to numerical errors at
energies just above the first destabilization energy E1

u of the mode.

We may study 3 different initial conditions located on the neighborhood of the unstable
SPO1 mode (see Fig. 11). Equivalently, in Figures 12, 13 and 14, we plot on the left panel
the surface of section (of the trajectory starting at ≈ 1.192× 10−7 from the unstable SPO1)
for times tf = 105, tf = 107 and tf = 108 respectively , while on the right panels we plot
the corresponding pfds of the normalized sums.

Clearly, as the integration time tf grows, our chaotic orbit eventually wanders over a more
extended domain, covering gradually a much larger part of the energy surface when
tf = 108. This may also be explained by the behavior of the Lyapunov exponents of the orbit
(see Figure 15).
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Figure 12. Left: Surface of section of a trajectory starting from a distance of ≈ 1.192× 10−7

from the unstable SPO1 saddle and integrated for a total time tf = 105. Right: For the
same integration time, we find that the pdf representing the distribution of the sums is well
fitted by a q–Gaussian, q ≈ 2.785 with χ2 ≈ 4.05× 10−6.
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Figure 13: Left: Surface of section of a trajectory starting from a distance ≈ 1.192× 10−7

from the unstable SPO1 saddle point total after time tf = 107. Right: For the same
integration time, the statistical distribution of the sums of one chaotic component of the
orbit can still be fitted–but not as well–by a q–Gaussian with q ≈ 2.483 with
χ2 ≈ 6.05× 10−6.
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Figure 14: Left: Surface of section of the same trajectory for total integration time
tf = 108. Right: Final integration time tf = 108 in the computations of the sums. In this
case it is evident that the distribution appears to converge to a Gaussian (q=1) .
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Figure 15: The 4 positive Lyapunov exponents of the previous solution integrated for a total
time of t = 108. Observe the sudden jump in their magnitude at ( t ≃ 107), where the orbit
escapes from the region of “weak chaos” and q–Gaussian distributions into the wider
chaotic domain of “strong chaos” where the statistics is Gaussian .
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(c) FPU SPO2 mode under fbc

We also examined the neighborhood of the SPO2 mode, which becomes unstable at much
smaller energies. Thus, we expect that, near SPO2, orbits will be more weakly chaotic and
QSS will persist for longer times.

As figure 16 shows, orbits now trace out a kind of “banana” shaped region (Fig. 16(a)) in a
regime of very small (positive) Lyapunov exponents (Fig. 16(b)). Here, the normalized
sum pdfs, up to tf = 1010!, converge to a function that is close to a q–Gaussian and
never deviates towards a Gaussian. As we see in Figure 16(a), the dynamics near SPO2
“sticks” to a type of quasiperiodic torus , at least up to tf = 108.

In Figure 16(b), we have plotted the four positive Lyapunov exponents up to tf = 109. Note
that, although they are all seen to decrease towards zero, at about tf > 109, the largest
exponent shows a tendency to converge to a very small value of about 10−7, indicating
that the orbit is chaotic and “sticky” to some quasiperiodic torus near SPO2.
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Figure 16: (a) The dynamics near SPO2 “sticks” to a quasiperiodic banana–like state, at
least up to tf = 108. The weakly chaotic nature of the motion is shown in (b), where we
have plotted the four positive Lyapunov exponents up to tf = 109. Note that, although they
all decrease towards zero, at about tf > 109, the largest exponent shows a tendency to
converge to a very small value of about 10−7, indicating that the orbit is chaotic.
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Figure 17: Left panel: The distribution of the normalized sum pdf of the orbit starting near
SPO2, for a total integration time tf = 106. Right panel: Final integration time tf = 1010 the
normalized sum pdf has converged to a shape that closely resembles a q–Gaussian with
q ≈ 2.769 and χ2 ≈ 4.44× 10−5.

COMPLEX HAMILTONIAN DYNAMICS – p. 40/63



10-5

10-4

10-3

10-2

10-1

100

-40 -30 -20 -10  0  10  20  30  40

P
(s

M
(j
) )

sM
(j)

c)

10-5

10-4

10-3

10-2

10-1

100

-40 -30 -20 -10  0  10  20  30  40

P
’(
s M

(j
) )

sM
(j)

d)

Figure 18: Left panel: The converged distribution of the normalized sum pdf of the orbit
starting near SPO2, for tf = 1010. Right panel: Its analytical form is better approximated by
the crossover formula (30)where a1 ≈ 0.006, aq ≈ 170 and q ≈ 2.82 with χ2 ≈ 2.06× 10−6,
than a q–Gaussian with q ≈ 2.769 and χ2 ≈ 4.44× 10−5 .
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Figure 19: Left Panel: Plot of the sum average of squared energies of each site C0(t) as a
function of time for the unstable (E = 0.768 > Eu ≈ 0.0257) π-mode with β = 1 and
N = 128. Right Panel: Log-log plot of the four biggest Lyapunov exponents as a function of
time for the same parameters as in panel (a).
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Figure 20: Left Panel: Plot of the instantaneous on site energy
En = 1

2
p2n + 1

2
V (qn+1 − qn) +

1
2
V (qn − qn−1) along the N = 128 FPU chain with p.b.c., at

time t = 9× 107 (observation of a chaotic breather ), where the corresponding pdf is a
q-Gaussian (q>1). Right Panel: At time t = 6× 108, the chaotic breather has collapsed ,
energy equipartition has occurred and the pdf tends to a true Gaussian.
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Figure 21: Left Panel: At t = 107, the sum distribution, near the maximum of the chaotic
breather, is still quite close to a q-Gaussian with q ≈ 1.6.Right Panel: presents an estimate
of the q index at different times, which shows that its values on the average fall significantly
closer to 1 for t > 107.
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Figure 22: Left Panel: Plot of C0 as a function of time for a perturbation of the unstable

(E = 1.5 > ESPO1
u ≈ 1.05226) SPO1 mode with β = 1.04 and N = 129 at initial distance

2.22× 10−7. Right Panel: Plot in linear-log scale of numerical (red curve), q-Gaussian
(green curve) and Gaussian (blue curve) distributions, after time tf = 2× 106, with
Nic = 5× 104 and M = 20. Here, the numerical fitting gives q ≈ 1.564 with χ2 ≈ 0.00014.
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Figure 23: Left Panel: Plot of C0 as a function of time for a perturbation of the unstable

(E = 0.1 > ESPO2
u ≈ 0.01279) SPO2 mode with β = 1 and N = 128 at initial distance

4.09× 10−7. Right Panel: Plot in linear-log scale of numerical (red curve), q-Gaussian
(green curve) and Gaussian (blue curve) distributions, after time tf = 106, with
Nic = 2.5× 104 and M = 20. Here, the numerical fitting gives q ≈ 1.943 with χ2 ≈ 0.00035.
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Weakly and Strongly Chaotic Orbits in a Barred Galaxy Model

The motion of a test particle in a 3D rotating model of a barred galaxy is governed by the
Hamiltonian:

H =
1

2
(p2x + p2y + p2z) + V (x, y, z)− Ωb(xpy − ypx). (32)

The bar rotates around its z–axis (short axis), while the x–direction is along the major axis
and the y along the intermediate axis of the bar. Ωb is the pattern speed of the bar and H

is the total energy of the orbit in the rotating frame of reference (Jacobi constant). The
corresponding equations of motion are:

ẋ = px +Ωby, ẏ = py − Ωbx, ż = pz , (33)

ṗx = −∂V

∂x
+ Ωbpy, ṗy = −∂V

∂y
− Ωbpx, ṗz = −∂V

∂z
.

The potential V of our model consists of three components: (1) A Miyamoto-Nagai disc:

VD = − GMD
√

x2 + y2 + (A+
√
z2 +B2)2

. (34)
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(2) A bulge, modeled by a Plummer sphere whose potential is:

VS = − GMS
√

x2 + y2 + z2 + ǫ2s
, (35)

where ǫs is the scale-length of the bulge and MS is its total mass.
(3) A triaxial Ferrers bar, with density ρ(x):

ρ(x) =







ρc(1−m2)2 ,m < 1

0 ,m ≥ 1
, (36)

where ρc = 105
32π

GMB

abc
is the central density, MB the total mass of the bar and

m2 =
x2

a2
+

y2

b2
+

z2

c2
, a > b > c > 0, (37)

a, b and c being the semi-axes. The corresponding potential is:

VB = −πGabc
ρc

n+ 1

∫ ∞

λ

du

∆(u)
(1−m2(u))n+1, (38)

COMPLEX HAMILTONIAN DYNAMICS – p. 48/63



where m2(u) = x2

a2+u
+ y2

b2+u
+ z2

c2+u
, ∆2(u) = (a2 + u)(b2 + u)(c2 + u), n is a positive

integer (with n = 2 for our model) and λ is the unique positive solution of m2(λ) = 1, outside
of the bar (m ≥ 1), and λ = 0 inside the bar. We use the parameter values G=1, Ωb=0.054
(54 km · sec−1 · kpc−1), a=6, b =1.5, c=0.6, A=3, B=1, ǫs=0.4, MB=0.1, MS=0.08,
MD=0.82. The units are: 1 kpc (length), 1000 km · sec−1 (velocity), 1 Myr (time),
2× 1011M⊙ (mass). The total mass G(MS +MD +MB) is set equal to 1.

Realistically, the maximal time of integration of the orbit s is T=10000Myr (10 billion
yrs), corresponding to a time of the order of one Hubble time. The question therefore is:
Can we use pdfs to identify the “ weakly” vs. “strongly” chaot ic nature of the orbits
based only on the small set of data provided by the integratio n over only T = 10000?.

We test first the 2-degree-of-freedom case:
1) Strongly Chaotic Orbit 1: H = E = −0.3, (x, y, px, py) = (0,−0.625,−0.314512,−0.24)

2) Weakly Chaotic Orbit 2: H = E = −0.36, (x, y, px, py) = (0,−0.625,−0.002,−0.24)

and then apply our methods to a more realistic 3-degree-of-freedom example
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Figure 24: The Poincaré Surface of Section (PSS) (y, py) with px > 0, x = 0 for the
Chaotic Orbit 1 above of the 2DOF Hamiltonian system for final integration time tf = 10000

(left panel) and tf = 100000 (right panel) for the same data.
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Figure 25: Pdfs of η = x+ y for the the Chaotic Orbit 1 above: Plot in linear-log scale of
numerical (red curve), q-Gaussian (green curve) and Gaussian (blue curve) distributions.
Left panel: Final integration time tf = 10000, with Nic = 4000 time windows and M = 50

terms in the sums. Numerical fitting with a q-Gaussian gives q ≈ 1.095 with χ2 ≈ 0.0003.
Right panel: tf = 100000, Nic = 20000 and M = 10, with q ≈ 0.97 and χ2 ≈ 0.00033.
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Figure 26: Maximum Lyapunov exponent evolution up to tf = 100000 for the the Chaotic
Orbit 1 of the 2DOF Hamiltonian system (red curve) and for the Weakly Chaotic Orbit 2 of
the same system (green curve).
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Figure 27: Left panel: The Poincaré Surface of Section (PSS) (y, py) with px > 0, x = 0 for

the the Weakly Chaotic Orbit 2 of the 2DOF Hamiltonian system for integration time

tf = 10000 (left panel) and tf = 100000 (right panel) for the same data.
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Figure 28: Pdfs of η = x+ y for the the Weakly Chaotic Orbit 2 : Plot in linear-log scale of
numerical (red curve), q-Gaussian (green curve) and Gaussian (blue curve) distributions.Left
panel: Final integration time tf = 10000, Nic = 4000 and M = 50 terms. Fitting with a
q-Gaussian gives q ≈ 3.52 with χ2 ≈ 0.00074. Right panel: tf = 100000, Nic = 25000 and
M = 50. Here, the numerical fitting gives q ≈ 3.539 with χ2 ≈ 0.00057.
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Figure 29: Left panel: Projections for the Chaotic Orbit 1 of the 3DOF Hamiltonian
system for final integration time tf = 10000 in x, y and x, z (right panel) . Initial conditions:
(x, y, z, px, py , pz) = (0.5875, 0, 1.291670, 0, 0, 0). H = E = −0.2852654501087481.
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Figure 30: Pdf plots for the Chaotic Orbit 1 of the 3DOF Hamiltonian system in linear-log
scale of numerical (red curve), q-Gaussian (green curve) and Gaussian (blue curve)
distributions. Left panel: η = z and tf = 10000 using Nic = 4000 and M = 50 terms.
Here, the numerical fitting gives q ≈ 1.25 with χ2 ≈ 0.00017. Right panel: η = x+ y,
tf = 100000, Nic = 10000 and M = 100 and fitting gives q ≈ 0.95 with χ2 ≈ 0.00029.
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Figure 31: Maximum Lyapunov exponent evolution up to tf = 100000 for the Weakly
Chaotic Orbit 2 of the 3DOF Hamiltonian system (green curve) and the Chaotic Orbit 1
of the same system (red curve).
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Figure 32: Projections for the Weakly Chaotic Orbit 2 of the 3DOF Hamiltonian system

for final integration time tf = 10000 in x, y (left panel) and x, z (right panel). Initial

conditions: H = E = −0.2792149022676664,

(x, y, z, px, py , pz) = (2.35, 0, 0.08883, 0, 0.133330, 0).
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Figure 33: Pdf plots for the Weakly Chaotic Orbit 2 of the 3DOF Hamiltonian system in
linear-log scale of numerical (red curve), q-Gaussian (green curve) and Gaussian (blue
curve) distributions. Left panel: η = z and tf = 10000, with Nic = 4000, M = 50 terms.
Right panel: η = x+ y, tf = 100000, Nic = 10000 and M = 100. In this case the
numerical fitting with a q-Gaussian gives q ≈ 2.464 with χ2 ≈ 0.00101.
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Figure 34: The time evolution of the 〈q〉M -entropic parameter of the Weakly Chaotic Orbit
2 of the 3DOF system (32) for η = x+ y, Nic = 20000 and M = 50, 100, . . . , 450, 500. The
dashed lines corresponds to one standard deviation from the average entropic parameter.
The inset is a zoom-in up to tf = 105. Panel b): Same as in panel a) but for η = z. These
results have been verified by Fourier spectra calculations.
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Conclusions

1. At “weakly chaotic regimes” located at the boundaries of islands of quasiperiodic
motion of Hamiltonian systems , probability density functions (pdfs) of sums of chaotic
variables, are well approximated by q–Gaussians .

2. These q–Gaussians are in fact Quasi–Stationary States (QSS) which last for long
times and often pass through different stages to exponential and finally to Gaussian
form .

3. In some cases, however, it is possible to find that the orbits converge to a specific QSS ,
whose pdf is close to a q–Gaussian , at least over its central part.

4. QSS approximated by q–Gaussians can be used to identify weakly from strongly
chaotic orbits in models of barred galaxies over realistically short time intervals , where
other methods, like Fourier analysis and Lyapunov exponents are not very helpful.

5. These results are also observed in low–dimensional conservative maps and
multi-dimensional Hamiltonian systems independent of the number of degrees of
freedom .
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