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Abstract

Information Geometry offers the framework for a geometric for-

mulation and quantification of entities related to information. The

geometric structures are directly associated to information theoretic

concepts which can be analyzed with concrete geometric tools. These

concepts and tools give the means to visualize the information proper-

ties and relations and to derive quantitative results in practical appli-

cations. This Background Material is meant to give, to an unitiated

reader, the absolute minimum background on some concepts and tools

of Differential Geometry and Information Theory. It is hoped that this

material will make the presentation of Information Geometry in the

main talk, smoother and faster.
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1 Motivation for reading this background

.
The term Information Geometry points to a conceptual construction

which connects concepts of, a priori, totally different nature. But one can
immediately imagine that some things related to information are points of
a space on which some geometry can be assumed to provide distances be-
tween these things. This vague statement expressed in mathematical terms
is indeed the framework of Information Geometry. The points related to in-
formation are probability distributions, the space is the manifold associated
with their parameters and the geometry is coming from a unique metric with
a statistical meaning. A useful mental picture is the set of normal distribu-
tions where the manifold coordinates are the mean value and the standard
deviation. The question ”how far are two normal distributions” requires an
appropriate metric which is closely related to the estimation error. This is
the Fisher-Rao metric. Thus we need to clarify the relation between prob-
ability distributions and various concepts of information. Then we need to
understand how to work on manifolds whose points are these probability dis-
tributions. And then to be able to select an appropriate Riemannian metric.
Living on a manifold we need to know the information theoretic meaning of
travelling on this manifold. The most ”conservative” or ”controlled” way is
to move our measuring stick parallel to itself. But how we may define and
check this parallelism? Here comes the concept of connection. Connections
help us to construct the geodesics. These are the parallel lines of the man-
ifold. In general these are not the shortest lines. The connections whose
geodesics are shortest lines are the Riemannian Connections. In applications
of Information Geometry many non-Riemannian connections are used. But
as it has turned out, for some special applications we need more general ge-
ometric tools, beyond those of a usual geometric manifold. That is, we need
to go beyond metric properties, and ask how two distributions differ, not how
far they are. This is offered by the so called contrast functions. These are
generalizations of the Entropy and Relative Entropy functionals. All these
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special information geometric concepts are going to be introduced in the
main talk, where some of their application are also discribed. Thus the ab-
solutely minimal background we need to present here concerns the concepts of

1) Differentiable Manifolds
2) Tangent Vectors
3) Riemannian Metrics
4) Connections, Parallel Transport and Curvature.
5) Information Theory and Entropic Functionals.

2 Differential Geometry

2.1 Differentiable manifolds

.
Suppose we are told that the outcomes of a test are values of a random

variable normally distributed. With no other information we need to know
the parameters (mean and standard deviation) of the gaussian density func-
tion. We may imagine for any pair of these parameters that there is a point
on a two dimensional surface. To specify the point we need a coordinate
system related to the parameters and a correspondence between the points
of the surface and the two dimensional space of the parameter values. This
gives us the idea of a manifold.

p(x;µ, σ) =
1√
2πσ

exp

{

−(x− µ)2

2σ2

}

(1)

More generally let M be a set. Since we need the concepts of neighbor-
hoods and continuity of maps we must assume some topology on M. For the
consistent construction of various geometric structures it is assumed that the
topology has denumerable basis and it is Hausdorff. If you do not know these
concepts, do not mind, since in the most common applications of Informa-
tion Geometry everything works well. On the other hand, since information
manifolds have been introduced for the statistical estimation problems of pa-
rameters, historically and in most current applications only local properties
are needed. Thus there is no immediate need for global topological prop-
erties. Still, from a theoretical point of view the global properties of info
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manifolds are interesting research problems.

Definition

A topological space M is called m-dimensional Euclidean if for each point
p ∈M their exists a neighborhood of p that is homeomorphic to Rm.

Figure 1: Definition of m-Euclidean manifold

Definition

A topological space M is an m-dimensional topological manifold if its topol-
ogy is second countable, Hausdorff and M is m-dimensional Euclidean.

In order to be able to construct various differential geometric entities
we need, first of all, to implement differentiation. This can be done through
the above correspondence which associates to the points of M, m coordinate
functions. These functions are defined for a given coordinate system, but in
order to have a definition of differentiability to be independent of the coor-
dinate system, some additional compatibility properties must be assumed.
Let φ and ψ be two coordinate systems. They are compatible if both φ ◦ψ−1

and ψ ◦φ−1 are smooth (infinitely differentiable) on their respective domains
which are open subsets of Rm. This means that the two coordinate systems
φ, φ are compatible if the transformation from the φ-coordinate system to
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the ψ-coordinate system is a diffeomorphism.

Definition

A local coordinate system at a point p in an m-dimensional topological man-
ifold is a pair (x,U) in which U is an open set containing p and x is a home-
omorphism of U onto an open subset of Rm.

Figure 2: A local coordinate system

Definition

Two coordinate systems (xα, Uα) and (xβ, Uβ) on a topological manifold are
compatible if both xα ◦ x−1

β and xβ ◦ x−1
α are infinitely differentiable.

A smooth structure or atlas on a topological manifold M is a collection
of compatible coordinate systems that cover M.

Definition

A smooth manifold or differentiable manifold is a topological manifold with
a maximal smooth structure.

Information Geometry considers sets of parametric distributions. The
number of parameters corresponds to the dimensionality of the manifolds.
The usual distribution functions give smooth manifolds, as it is evident from
the example of the family of normal distributions. But in the applications we
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Figure 3: Compatible Coordinate Systems

need to consider subfamilies or to think of a family as a subfamily of a bigger
one. This in turn corresponds to the consideration of subsets belonging to a
given manifold.

To make this precise we must define first the concept of a function defined
on a manifold. This will be a map between manifolds f : M → S where
a point p ∈ M is mapped to the point f(p) ∈ S. But in order to be able
to characterize this map we must use the corresponding coordinate systems.
Thus we have

Definition

A function f : M → S from an m-dimensional smooth manifold M into an
k-dimensional smooth manifold S is s-fold continuously differentiable and of
rank r at p ∈ M if for some coordinate system (x,U) at p and (y,V) at f(p)
the function y ◦ f ◦ x−1 is s-fold continuously differentiable and of rank r at
x(p), where r = 0, 1, ...,min{k,m}. If f is infinitely differentiable at p it is
called smooth at p. If it is smooth at every point of M it is called smooth.
The set of all real smooth functions on M is denoted by C∞(M)

The meaning of this definition is that to characterize the map from p
to f(p) we go from the point x(p) in Rm which is given by the m-tuple of the
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Figure 4: Maps between manifolds

coordinates of p , back to the manifold point p, then we map the point to f(p),
and there we have the k-tuple y(f(p)) of the coordinate of f(p). Thus we use
the known definition of functions between the Eucledian spaces Rm → Rk.
This definition gives us the main morphism used in Differential Geometry,
namely

Definition

The function f : M → S is a diffeomorphism if it is a homeomorphism of
the smooth manifold M onto the smooth manifold S and both f and f−1

are smooth.
The importance of this definition is, that from the homeomorphisms

which preserve the topological structure we go to diffeomorhisms which pre-
serve the differential structure as well. Thus the generalization of the picture
of a two dimenstional surface in R3 is that of a submanifold.

Definition

A mapping f : M → S of a m-dimensional manifold into a k-dimensional
manifold is an imbedding if it is a smooth map of rank r that is homeomor-
phic to its image f(M) ⊂ S. If f is an imbedding then f(M) is an imbedded

6



submanifold of S.

Figure 5: Imbedded Submanifold

2.2 Tangent Vectors

.
In Eucledian Geometry, ”tangent vectors” are meant to be ”tangents” to

smooth curves. Suppose we are given a curve on M. This is a one-to-one
function γ : I → M from some interval I ⊂ R to M. For a selected coordinate
system let γi(t) = ξi(γ(t)), Then γ̄(t) = [γ1, ..., γm] is a curve in Rm. If this
curve is C∞ then it is said to be a C∞ curve on M. If M is a subset of Rn ,
then the tangent to this curve at a point a of M is defined through the limit

γ̇(a) = lim
h→0

γ(a+ h)− γ(a)

h
. (2)

But in this definition all the relevant vectors belong in the same vector space,
and the limit is mathematically well defined. When M is a general manifold
this definition of the tangent of a curve cannot be used. But, on the other
hand, we may define the derivatives of functions defined on curves, because
these functions are real-valued. Let f be a C∞ on M. f(γ(t)) = f̄(γ̄(t)) =
f̄(γ1(t), ..., γm(t)) is a real-valued function and we have the usual derivative
definition

d

dt
f(γ(t)) =

(

∂f̄

∂ξi

)

¯γ(t)

dγi(t)

dt
. (3)
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Figure 6: Functions on the Manifold

Figure 7: Tangent Vectors
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This is the form of a directional derivative. Thus we may define the tangent
vectors as operators acting on smooth functions defined on the manifold.
Namely we may define the tangent on the curve γ(t) as

γ̇(a) =

(

dγ

dt

)

p

= γ̇i(a)

(

∂

∂ξi

)

p

(4)

More formally we have

Definition

Let M be a smooth manifold. A tangent vector at a point p ∈M is a map-
ping Xp : C

∞(M) → R such that for all f, g ∈ C∞, and a ∈ R the following
properties hold
(i) Xa(a · f + g) = a ·Xp(f) +Xp(g)
(ii) Xp(f · g) = g ·Xp(f) + f ·Xp(g)

This means that tangent vectors satisfy the algebraic properties of vectors

Figure 8: Tangent Space

and the Leibnitz rule for derivatives.

Definition

The set of tangent vectors at p is the tangent space of M at p.

This is denoted by TpM. For a given coordinate mapping x, defined on
an open set U ⊆ M with x : U → Rm we have x = (x1, ..., xm). Then the
ath x-coordinate basis tangent vector at the point p is ∂/∂xa|p. With this
notation a general tangent vector is written as

Xp =
∑

va(p) · ∂

∂xa
|p (5)
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The functions va are the components of the tangent vector at p. A smooth
family of tangent vectors is a vector field defined on M. The space of all
vector fields on M is denoted by X (M)

2.3 Riemannian Metrics

.
For every point p ∈ M the tangent space TpM is a vector space on which

we may define an inner product. The collection of all these inner products
< ·, · >= {< ·, · >p |p ∈ M} gives a metric structure on the manifold. We
have

Definition

A smooth Riemannian metric is a function < ·, · >: X (M) × X (M) 7→
C∞(M) satisfying for all f ∈ C∞(M) and all X, Y, Z ∈ X (M)

< X, Y > = < Y,X > (6)

< fX, Y > = f < X, Y > (7)

< X + Z, Y > = < X, Y > + < Z, Y > (8)

and to avoid degeneracy, for all X 6= 0 and all p ∈ M

< X,X > > 0 (9)

It is evident that these are properties that an inner product on a vector space
must satisfy, namely to be bilinear, symmetric and positive definite. With
this metric structure we have

Definition

A smooth Riemannian manifold is a pair (M, < ·, · >) where M is a smooth
manifold and < ·, · > is a Riemannian metric on M.

For a given coordinate basis on M the metric evaluated on the basis
elements is written as gab =< ∂a, ∂b >. Then the Riemannian manifold is
denoted by (M, g). A diffeomorphism between two Riemannian manifolds
which preserves the metric is called an isometry.
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2.4 Connections, Parallel Transport and Curvature

.
Suppose we want to draw a straight line beween two points on a plane.

There are two ways to do that. We start from one point with a small vector
pointing to the direction of the other point and draw small vectors parallel
to each other untill we reach the other point. An easier way is to stretch a
string between the two points and draw the line parallel to the string which
is the minimal line connecting the two points.. Of course we get the same
result. Suppose now that we want to do the same thing on the surface of
a sphere. The second method is straightforward, because we know that the
great circles are the minimal lines connecting two points on the sphere. The
equivalent to the fisrt method is that we must draw tangent vectors parallel
to themselves. Again we obtain great circles. But now let us imagine the
following experiment. We draw a triangle on the plane and move a vector
parallel to itself, that is making constant angle with the sides of the triangle.
Upon returning to the initial point we see that the final vector is identical
to the initial. If we do the experiment on the sphere with a triangle formed
by great circles, we discover that the final vector differs from the initial one.
We will discover that , more generally, the difference between the initial and
final vectors depend on the paths followed. This is due to the fact that the
sphere is not ”flat”. This is not a metric property, and it is coming from the
meaning of the concept ”straight”. Behind this is the fundamental geometric
concept of connection and its role in the definition of parallel transport. It is
a special case that the ”straight lines”, or geodesics of a connection are also
minimal lines. This is the Riemannian connection.

Let us be more formal. In the definition of parallel transport of vectors
defined on a plane we use the fact that these vectors belong, for any pair of
points , to vector spaces which can be identified. That is, there is a natural
linear mapping between the bases of these spaces. But for two points p, p′ ∈
M there is no natural correspondence between the tangent spaces TpM and
Tp′M. A connection is such a correspondence. Let Πp,p′ be a linear mapping
between the tangent spaces at p and p′. Let p and p′ be infinitesimally close.
This means that the corresponding coordinates are infinitesimaly close. If [ξi]
is a coordinate system forM let dξi = ξi(p′)−ξi(p). Let {(∂1)p, ..., (∂m)p} and
{(∂1)p′ , ..., (∂m)p′} be the corresponding basis vectors of the tangent spaces.
Then the linear mapping must give an expression of the basis vectors at p in
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terms of the basis vectors at p′. We must have

Πp,p′((∂j)p) = (∂j)p′ + dξi(Γk
ij)p(∂k)p′ (10)

where (Γk
ij)p : i, j, k = 1, ...,m are m3 real numbers, depending on the point

p. If for each pair of neighboring points p and p’ in M there is a linear
mapping Πp,p′ : Tp → Tp′ defined by the previous equation and if the Γ′s as
functions of p are all C∞ then this linear mapping is an affine connection.
The set of functions (Γk

ij) are called connection coefficients.

Now having a rule of correspondence between the vectors of the tangent
spaces we may define the ”parallel translation of tangent vectors”. Let two
points p,q on M and a curve which connects them γ : [a, b] → M such
that γ(a) = p and γ(b) = q. A tangent vector along γ is a mapping from
each point γ(t) to the tangent vector X(t) ∈ Tγ(t). If for infinitesimally close
points on the curve we have

X(t+ dt) = Πγ(t),γ(t+dt)(X(t)) (11)

then X(t) is defined to be parallel along γ. Using the connection coefficients,

Figure 9: Moving parallel vectors defined on the plane

this condition on X(t) becomes

Ẋk(t) + γ̇i(t)Xj(t)(Γk
ij)γ(t) = 0 (12)

The solution of this ordinary differential equation is the parallel translation

along γ of X(a) defined on p.
Such a parallel translation helps us to define the derivatives of tangent
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Figure 10: Moving parallel vectors on the sphere

vectors. In the definition of the derivative of vectors on the plane we construct
the infinitesimal change of the vectors from the parallel translate of the vector
from its initial value. We do exactly this here but using the definition of the
parallel translation along the curve as defined above. This leads us to the
definition of the covariant derivative δX

dt
. We have

δX(t) = Πγ(t+dt),γ(t)(X(t+ dt)) − X(t) (13)

and dividing by dt we obtain in a coordinate system

δX(t)

dt
= {Ẋk(t) + γ̇i(t)Xj(t)(Γk

ij)γ(t)}(∂k)γ(t) (14)

From this it is evident that parallel translation is equivalent to the vanish-
ing of the covariant derivative. Now the concept of directional derivatives of
functions on M implemented by the tangent vectors which are differential
operators on C∞(M) can be extended to ”directional derivatives of tangent
vectors”. This variation of vector fields in various directions gives the essen-
tial information of the ”shape” of the manifold. Let a vector field X = X i∂i.
For a vector field Z = Zi(∂i)p ∈ TpM we want the derivative of X along Z.
Considering a curve for which Z is the tangent vector we use the definition
of covariant derivative along this curve. Denoting this covariant derivative
with ∇ZX we get from the previous equations

∇ZX = Zi{(∂iXk)p + Xj
p(Γ

k
ij)p}(∂k)p (15)
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Figure 11: Associating vectors of different tangent spaces

We observe that ∇ZX ∈ X (M). Thus for any pair of vector fields X, Y ∈
X (M), given by X = X i∂i and Y = Y i∂i we may define the vector field
∇XY ∈ X (M) with

∇XY = X i{∂iY k + Y jΓk
ij}∂k (16)

We call this the covariant derivative of Y with respect of X. For the basis
vectors this becomes

∇∂i∂j = Γk
ij∂k (17)

This equation expresses the action of the covariant derivative as a trasfor-

Figure 12: Using the connection for the parallel translation of vectors and
the construction of derivatives.

mation of the basis of tangent vector as we move in the direction of each
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basis vector.
It follows that a covariant derivative ∇, for X, Y, Z ∈ X (M) and f ∈

C∞(M) satisfies the properties

i) ∇X+YZ = ∇XZ + ∇YZ (18)

ii) ∇X(Y + Z) = ∇XY + ∇XZ (19)

iii) ∇fXY = f∇XY (20)

iv) ∇X(fY ) = f∇XY + (Xf)Y (21)

These properties can be used as the defining properties of a connection on
a manifold. We note that the family of all connections on a smooth manifold
forms an affine space. This is very important, and useful for Information Ge-
ometry, where, as we are going to see, there exist connections with statistical
meaning. These may be combined linearly to form connections which play a
particular role.

Now given a connection ∇ suppose that there exists a coordinate system
with the property that all its basis vectors are parallel with respect to the
connection. That is, all the covariant derivatives ∇∂i∂j are zero. This means
that, for this coordinate system, all connection coefficients vanish identically.
Then this is an affine coordinate system for ∇, and the connection is said
to be flat. The existence of such a coordinate system is a property of the
connection, and though it is not trivial to find such coordinates, there exist
geometric structures derived from the connection which are related to this
existence. The idea is to have properties which characterize the connection
but do not depend on the coordinate system. These are maps from pairs or
triplets of vector fields with values in the space of vector fields. The impor-
tant property is that they are tensors, and so their value does not depend on
the coordinate system. Let X, Y, Z ∈ X (M). We have

R(X, Y )Z = ∇X(∇YZ) − ∇Y (∇XZ) − ∇[X,Y ]Z (22)

T (X, Y ) = ∇XY − ∇YX − [X, Y ] (23)

where the commutator [X,Y], with X = X i∂i and Y = Y i∂i is the vector
field

[X, Y ] = (Xj∂jY
i − Y j∂jX

i)∂j (24)

These tensor fields are called respectively Riemann - Christoffel curvature

tensor and torsion tensor. In a specific coordinate system their tensor ele-
ments are

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik + Γl

ihΓ
h
jk − Γl

jhΓ
h
ik (25)
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T k
ij = Γk

ij − Γk
ji (26)

As we said before, when the connection is flat, there exists and affine co-
ordinate system in which the connection coefficients are zero. Then, in this
system the tensors R and T are zero. But since they are tensors they are
zero in all coordinate systems. In this case we say that the manifold is flat
with respect with this connection. If the torsion is zero, namely T k

ij = 0 then
the connection coefficients are symmetric with respect to the indexes ij, and
it is called symmetric connection or torsion-free connection. In the Classical
Information Geometry mainly symmetric connections are introduced.

From the expressions above for the elements of R and T it follows that
1-dimensional manifolds are automatically flat. Now suppose that the man-
ifold N is a submanifold of the manifold M and let a connection ∇ on M.
Then in general the covariant derivative ∇XY for vector fields of N would
be outside of X (N ). If for all X, Y ∈ X (N ) we have

∇XY ∈ X (N ) (27)

the submanifoldN is called autoparallel. 1-dimensional autoparallel subman-
ifolds are the geodesics for this connection of M. These curves then can be
parametrized by an affine coordinate γ, and satisfy the ordinary differential
equation

γ̈(t) + γ̇i(t)γ̇j(t)(Γk
ij)γ(t) = 0 (28)

where γi = ξi ◦ γ. Now having a definiton of geodesics as the parallel lines

for a given connection we must face our ”metric prejudices” that geodesics
are lines between points with minimal lenght. Thus a natural question is
what is the relation between the metric geodesics with those defined through
a connection. To answer this we must think of a condition that combines the
two independent geometric structures : metric and connection. A natural
condition is that if two vector fields are parallel transported along a line on
the manifold (action of a connection) their inner product should not change
(metric condition). Thus if the covariant derivatives of the two vectors along
the curve are zero, namely δ

dt
X = 0 and δ

dt
Y = 0 we get from the equation

d

dt
< X(t), Y (t) > =

〈

δX(t)

dt
, Y (t)

〉

+

〈

X(t),
δY (t)

dt

〉

(29)

that the inner product remains constant. This special connection is unique
and it is called metric connection or Riemannian connection. Its connection
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coefficients are given by

Γij,k =
1

2
(∂igjk + ∂jgki − ∂kgij) (30)

where Γij,k = Γh
ijghk.

Figure 13: The metric connection leaves invariant the inner product

3 Classical Information Theory

3.1 Introduction

.
As it is going to be presented in the talk, historically, Information Geom-

etry started from the observation that a certain metric on the manifold of
parametric probability distribution has definite statistical meaning and use-
fulness. Then particular connections were introduced which are flat and play
an important role in the developement of many applications. It also became
obvious that more general geometries may be introduced. These geometries
are based on the so called contrast functions. These are generalizations of
the relative entropy concept of Information Theory. So , in this Background
Material for the talk, we present some motivation and the most essential
definitions of these functionals.
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3.2 Uncertainty, Entropy and Information

.
In the search for a definition and quantification of the concept of ”Infor-

mation”, it turned out to be natural to ponder about the opposite concept,
that of ”Uncertainty”. In this way, we may accept the intuitive expectation
that ”the decrease of uncertainty means, or is equal to the increase of in-
formation”. And the reason to follow this route is that it seems easier to
formalize the concept of ”uncertainty”. Shannon, in 1948, introduced his
definition of Entropy, as a concept essentially identified with Uncertainty.
To be able to derive the mathematical form of Entropy, he started with cer-
tain axioms that a quantity of Uncertainty must satisfy. These axioms of
Uncertainty are intuitively plausible. Asking the question ”uncertainty of
what?” , we may say ”of the occurance or not of certain events”. But this
immediately brings us to randomness of events, and thus to probabilities that
certain random variables take various values. But then the uncertainty must
not depend on the particular values that the random variable takes, but only
on the probabilities of the events. Thus suppose that we have a random
variable X, which can take the values xi with probabilities pi, 1 ≤ i ≤ n. Let
H(p1, ..., pn) be the uncertainty of the outcome of the values of X. We expect
the following to be the minimal properties that this function must satisfy.

A1 H(p1, ..., pn) is maximum when p1 = p2 = ... = pn = 1/n
A2 H(p1, ..., pn) must be symmetric in its arguments.
A3 H(p1, ..., pn) ≥ 0. Is zero only when one pi is equal to 1.
A4 H(p1, ..., pn, 0) = H(p1, ..., pn)
A5 H( 1

n
, 1
n
, ..., 1

n
) ≤ H( 1

n+1
, 1
n+1

, ..., 1
n+1

)
A6 H(p1, ..., pn) should be a continuous function of its arguments.
A7 H( 1

mn
, 1
mn
, ..., 1

mn
) = H( 1

m
, 1
m
, ..., 1

m
) +H( 1

n
, 1
n
, ..., 1

n
)

A8 H(p1, ..., pm, q1, ..., qn) = H(p, q)+pH(p1/p, ..., pm/p)+qH(q1/q, ..., qn/q),
where p = p + ...+ pm and q = q + ...+ qn, with p+q = 1.

The intuitive origin of these axioms is the following:
A1 A fair die is more uncertain than a biased one.
A2 Uncertainty depends only on the probabilities, and not on the order of
the appearance of the events (for independent events).
A3 Conventionally uncertainty is a positive quantity. There should be no
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uncertainty if there is no randomness.
A4 An event with zero probability cannot affect uncertainty.
A5 More possible events should present more uncertainty.
A6 Small changes of the probabolities of the event should have small in-
fluence on the uncertainty.
A7 The uncertainty of two sequences of random events should be the sum
of the uncertainties.
A8 Classifying the events into two categories, the total uncertainty should
be equal to the uncertainty of the appearance of the two categories plus the
weighted sum of the individual uncertainties of the events in the two cate-
gories.
Then the following theorem holds

Theorem

Let H(p1, ..., pn) be a function defined for any integer n and for all values of
p1, ..., pn, such that

pi ≥ 0
∞
∑

i=1

pi = 1. (31)

If H satisfies the axioms A1-A8, then

H(p1, ..., pn) = −λ
∑

k

pklogpk (32)

with λ any positive constant and the sum is over all values for which pk > 0

Now given a random variable with a finite number of values with proba-
bilities such that

∑

pi = 1, pi > 0, 1 ≤ i ≤ n the entropy of X is defined
by the above function.

It seems to be an obvious fact that given two independent random vari-
ables, the total uncertainty about them should be the sum of their individual
uncertainties, and if there is a dependence between them then the total un-
certainty nust be less than the sum of uncertainties. Indeed this is the case
as it can be proved that

H(X, Y ) ≤ H(X) + H(Y ) (33)

To make this dependence more quantitative we use conditional probabilities.
Let an event A in the probability space of the random variable X. Then the
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Figure 14: The Shannon Entropy is maximal for equal probabilities

conditional entropy is defined

H(X|A) = −
∞
∑

k=1

P (X = xk|A)logP (X = xk|A) (34)

This gives the conditional entropy between two random variables

H(X|Y ) =
∑

j

H(X|Y = yj)P (Y = yj) (35)

Obviously the following hold

H(X|X) = 0 (36)

and for independent X and Y

H(X|Y ) = H(X) (37)

The Conditional entropy helps us to replace the inequality for the total un-
certainty with an equality, as it can easily be proved that

H(X, Y ) = H(Y ) + H(X|Y ) (38)

There is an other route to the definiton of the concept of ”Information”.
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This was proposed by Hartley in 1928. Let two events E1 and E2 on the same
probability space with probabilities p1 and p2 respectively. A measure of in-
formation for two independent realizations of the experiment should satisfy
the equation

I(p1p2) = I(p1) + I(p2) (39)

since for independent events the total probability is the product of the indi-
vidual probabilities. A function that satisfies this equality is

I(E) = −log2P (E) (40)

We define I(E) as the information of the event E. The logarithm with base
2 measures this information in units of bits. Now, for a random variable
X, as above, we may define the information about X as the average of the
information for its individual values, namely

H(X) = −
∑

k

pklog2pk = −
∑

k

pkI(X = xk) (41)

which is equal to the entropy defined above. Thus we have

Information = Entropy = Uncertainty (42)

3.3 Relative entropy and Mutual Information

.
We referred to the function H(X,Y) as the total uncertainty for the two

random variables. Its ”entropic name” is joint entropy. Explicitly it is defined
as

H(X, Y ) = −
∑

x

∑

y

p(x, y)logp(x, y) (43)

But in practice, in particular in statistical estimation tests, we want to es-
timate and compare probability distributions. For one random variable we
want to quantify how inefficient is to assume that the probability distribution
is given by p(x) while the true is q(x). We want to know ”how far we are”.
This is quantified with the relative entropy or the Kullback-Leibler distance

D(p||q) =
∑

x

p(x)log
p(x)

q(x)
(44)
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This is not a true distance, since it is not symmetric.
Now for two random variable X and Y a measure of dependence should

be a functional of probability distributions which quantifies the difference
between the joint distribution and the product of the individual ones. It
turns out that the appropriate functional is the mutual information

I(X, Y ) =
∑

x

∑

y

p(x, y)log
p(x, y)

p(x)p(y)
(45)

The following properties of the mutual information reveal its relation to the
joint entropy, the information content, and the concept of uncertainty

I(X, Y ) = H(X) − H(X|Y ) (46)

I(X, Y ) = H(Y ) − H(Y |X) (47)

I(X, Y ) = H(X) + H(Y ) − H(Y |X) (48)

I(X, Y ) = I(Y,X) (49)

I(X,X) = H(X) (50)

Many interesting identities and inequalities hold for these functions. They
are the main objects that play a fundamental role in Information Theory.
Their relevance to Information Geometry comes form the fact that they can
be a starting point for the construction of ”distance like” objects, contrast
functions and more general geometric structures than the usual Riemannian
ones.

4 Bibliographical Comments

.
This Background Material is a minimal introduction to the most elemen-

tary concepts of Differential Geometry and Information Theory. It gives the
definitions of various concepts that are going to be used in the talk Infor-

mation Geometry for Complex Systems I, II. The presentation has followed
some standard books of Differential Geometry, Information Geometry and
Information Theory. There are hundreds of introductory and advanced ref-
erencies which can be found in the internet. The search with the code words
”information geometry” will make the reader dizzy, for sure, but looking at
the google scholar for the name ”amari” will get tens of papers and talks of
Amari which containe both introductory and advanced material. The reader
is strongly adviced to do this exercise.

22



4.1 Differentiale Geometry

.
Information Geometry started as an attempt to give geometrical meaning

to the estimation theory of statistics. The differential geometric construc-
tions started from classical parametric statistical models, considering them as
points of differential manifolds. Then the interest turned to non-parametric
statistics and to questions of quantum estimation theory. Here we presented
the absolute minimum background for information geometry of the classical
parametric models. The non-parametric and quantum extensions would re-
quire far more background which would not be necessary for the talk, which
conforms to the philosophy of the School.

For the introduction of the concepts we used the books [1, 2, 3, 4], These
are classical referencies for Information Geometry. Their introduction of Dif-
ferential Geometric concepts are elementary, but good enough to present a
foundation of the theory of Information Geometry. The book [5] is a very
good introduction of Differential Geometry, with more advanced material.
The interested reader will fined in this bool a deeper approach to the con-
cept of connection.

4.2 Information Theory

.
The latest developments of Information Geometry which evolve arround

the concepts of contrast functions, are based on ideas of entropy and relative
entropy. The book [7] is a classic reference on Information Theory. Though
there exist many books on Information Theory, this is introductory and very
up to date and complete. The book [6] is concerned with cryptography,
but its first chapter is an amazingly clear and intuitive introduction to the
concept of entropy.
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